
www.manaraa.com

University of South Florida University of South Florida

Scholar Commons Scholar Commons

Graduate Theses and Dissertations Graduate School

7-6-2010

Low-Level Programming of a 9-Degree-of-Freedom Wheelchair-Low-Level Programming of a 9-Degree-of-Freedom Wheelchair-

Mounted Robotic Arm with the Application of Different User Mounted Robotic Arm with the Application of Different User

Interfaces Interfaces

Punya A. Basnayaka
University of South Florida

Follow this and additional works at: https://scholarcommons.usf.edu/etd

 Part of the American Studies Commons

Scholar Commons Citation Scholar Commons Citation
Basnayaka, Punya A., "Low-Level Programming of a 9-Degree-of-Freedom Wheelchair-Mounted Robotic
Arm with the Application of Different User Interfaces" (2010). Graduate Theses and Dissertations.
https://scholarcommons.usf.edu/etd/1570

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been
accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons.
For more information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/
https://scholarcommons.usf.edu/etd
https://scholarcommons.usf.edu/grad
https://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F1570&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F1570&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

www.manaraa.com

Low-Level Programming of a 9-Degree-of-Freedom Wheelchair-Mounted Robotic Arm

with the Application of Different User Interfaces

by

Punya A. Basnayaka

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Mechanical Engineering
Department of Mechanical Engineering

College of Engineering
University of South Florida

Major Professor: Rajiv Dubey, Ph.D.
Kyle B. Reed, Ph.D.

Redwan M. Alqasemi, Ph.D.
Shuh - Jing Ying, Ph.D.

Date of Approval:
July 6, 2010

Keywords: PID, GUI, rehabilitation robots, C++ functions, accuracy, repeatability

Copyright © 2010, Punya A. Basnayaka

www.manaraa.com

Dedication

This thesis is dedicated to my wonderful parents, who have raised me to be the person I

am today and to my husband. You have been with me every step of the way, through good times

and bad. Thank you for all the guidance and motivation that you have always given me.

www.manaraa.com

Acknowledgements

It is my pleasure to acknowledge my supervisor, Dr. Rajiv Dubey for giving me the

opportunity to carry out this research under his advice and supervision. I also take this

opportunity to thank Dr. Redwan M. Alqasemi for his helpful guidance and encouragement

throughout this research. I would also like to acknowledge Dr. Kyle B. Reed and Dr. Shuh–Jing

Ying for being my committee members and for their valuable advice in different occasions.

I would like to thank all the members of the Assistive and Rehabilitation Robotics

Technologies Center at USF including Dr. Kathryn De Laurentis and Dr. Stephanie Carey for their

help. I am thankful to the USF WMRA research group including Garrett Pence, Ana Torres, John

Capille, Mario Simoes and Fabian Farelo and all the other lab mates including Karan Khokar and

Michelle Smith who helped me during different stages of this work.

.

www.manaraa.com

i

Table of Contents

List of Tables ... iii

List of Figures .. iv

Abstract ... vi

Chapter 1: Introduction ... 1
1.1. Motivation .. 1
1.2. Thesis Objectives .. 2
1.3. Thesis Outline ... 3

Chapter 2: Background .. 4
2.1. Main Types of Rehabilitation Robots ... 4

2.1.1. Workstation Robots .. 5
2.1.2. Stand Alone Manipulators .. 7
2.1.3. Wheelchair-Mounted Robotic Systems .. 8
2.1.4. Mobile Robots .. 10

2.2. Robot Programming Languages .. 10
2.2.1. C++ Software Architecture of USF WMRA-I .. 12
2.2.2. Matlab Software Architecture of USF WMRA-I .. 12

2.3. Human Machine Interface .. 13
2.4. Safety ... 16
2.5. Overview of USF WMRA-I .. 16

Chapter 3: Closed Loop Motion Control System of USF WMRA-II .. 18
3.1. Introduction ... 18
3.2. Motion Controller .. 18
3.3. Motors ... 19
3.4. Position Sensor (Encoder) ... 19
3.5. Computer .. 20
3.6. PID Feedback Controller .. 21

3.6.1. Overview of Tuning Methods .. 22
3.6.2. PID Tuning Software .. 22

Chapter 4: Denavit-Hartenberg Parameters and Hardware of USF WMRA-II 24
4.1. Denavit-Hartenberg Rules .. 24
4.2. DH Parameter Assignment for USF WMRA-II ... 26
4.3. Hardware Architecture .. 27

4.3.1. Power Wheelchair .. 27
4.3.2. 7-DOF Robotic Arm .. 28
4.3.3. Power Supply ... 29
4.3.4. Controller Board ... 29

Chapter 5: Calibration and Programming of USF WMRA-II ... 31
5.1. Axis Calibration of WMRA-II ... 31

www.manaraa.com

ii

5.2. Calculation of Velocity and Acceleration .. 32
5.2.1. Position Control .. 33

5.3. PID Gains Setting of WMRA-II ... 34
5.3.1. Tuning Procedure ... 34
5.3.2. Scope ... 35
5.3.3. Auto Tuning .. 35
5.3.4. Manual Tuning .. 36

5.4. C++ Based Programming ... 37
5.5. High-Level Control Programming ... 37
5.6. C++ Low-Level Control Programming .. 38

5.6.1. Establishing the Communication of the Controller Board 39
5.6.2. Parameter Initialization ... 40
5.6.3. Motion Control Functions ... 40
5.6.4. Data Record ... 41

5.7. Matlab Low-Level Control Programming .. 42
5.8. User Interfaces ... 42

5.8.1. Touch-Screen ... 42
5.8.2. Spaceball .. 43

5.9. Test GUI for WMRA-II .. 44

Chapter 6: Testing and Evaluation of WMRA-II ... 46
6.1. Power Usage of the Robotic Arm ... 46
6.2. Repeatability and Accuracy of the Robotic Arm ... 47

6.2.1. Methodology ... 48
6.3. Use of Different Interfaces .. 51

6.3.1. Touch-Screen Evaluation ... 52
6.3.1.1. Testing Procedure and Results .. 52

6.3.2. Spaceball Evaluation .. 52
6.3.2.1. Testing Procedure and Results .. 53

6.4. Manipulability Measure of WMRA-II ... 53

Chapter 7: Conclusion .. 55

References ... 57

Appendices ... 60
Appendix A. C++ Programs ... 61
Appendix B. C++ Touch-Screen GUI Program ... 139

About the Author ... End Page

www.manaraa.com

iii

List of Tables

Table 1: Interface Devices Matching with Body Functions [20] ... 15

Table 2: WMRA-I Specifications [26] .. 17

Table 3: DH-Parameter Description ... 26

Table 4: DH-Parameter Comparison of Two Robotic Arms ... 27

Table 5: Specifications of the Wheelchair .. 28

Table 6: Data from Manufacturer’s Datasheets ... 32

Table 7: Radians to Encoder Counts Conversion Factors ... 32

Table 8: Motion Profile Parameter Notation ... 33

Table 9: PID Gain Parameters of Motors ... 36

Table 10: Prototypes of WMRA-I and WMRA-II C++ Functions .. 38

Table 11: C++ Function Prototypes of ArmMotion Function .. 38

Table 12: C++ Controller Board Function for PID Gains Setting ... 40

Table 13: Controller Board Function for Position Control .. 41

Table 14: Function Example of Data Record ... 41

Table 15: System Specifications of WMRA-II .. 46

Table 16: Power Usage of WMRA-II .. 47

Table 17: Power Consumption Comparison of WMRA-II with WMRA-I ... 47

Table 18: Selected Points for the Accuracy and Repeatability Test .. 49

Table 19: Repeatability Comparison of WMRA-I and WMRA-II .. 50

Table 20: Average Percentage Relative Error of WMRA-I and WMRA-II 50

www.manaraa.com

iv

List of Figures

Figure 1: ProVAR (track-mounted upside-down PUMA-260) [4] ... 5

Figure 2: RAID Workstation Layout [6], [35] ... 6

Figure 3: My Spoon (left) and Handy-1 (right) Feeding Aids [8] .. 7

Figure 4: Handy-1’s Washing, Shaving and Teeth Cleaning Tray (left)

and Make-Up Tray (right) [8].. 7

Figure 5: Manus Robotic Arm [34], [35].. 8

Figure 6: University of Bremen’s FRIEND II Exhibited at ICORR’07 [35] .. 9

Figure 7: Care-O-Bot Serving Food (operated fully autonomously) ... 10

Figure 8: Basic Elements of a WMRA System ... 13

Figure 9: Head Tracker .. 15

Figure 10: WMRA-I [7] .. 17

Figure 11: Close Loop Motion Control System Block Diagram .. 18

Figure 12: Quadrature Detection of an Encoder and Elements of Optical Encoder [28] 20

Figure 13: PID Block Diagram of Galil Tuner [37] .. 22

Figure 14: Link Frames Assignment [22] ... 25

Figure 15: Frame Assignment of WMRA-II .. 26

Figure 16: Quickie 626 Wheelchair .. 28

Figure 17: CAD Drawing of WMRA-II Robotic Arm .. 29

Figure 18: WMRA-II Robotic Arm ... 29

Figure 19: Controller Board (Galil DMC-2183) ... 30

Figure 20: Labeling of Motors of the Robotic Arm .. 31

Figure 21: Motion Profile Diagram .. 33

Figure 22: Step Responses of Motor G .. 35

www.manaraa.com

v

Figure 23: Galil Tuner ... 36

Figure 24: Position and Velocity Profiles for Position Control .. 41

Figure 25: Screen Shot of Touch-Screen Control User Interface .. 43

Figure 26: Spaceball and Its Demo Program Window ... 44

Figure 27: Matlab-Spaceball Program Window .. 44

Figure 28: Test GUI for WMRA-II ... 45

Figure 29: Representation of Accuracy and Repeatability [33] .. 48

Figure 30: Experimental Setup for Repeatability and Accuracy Test .. 49

Figure 31: Repeatability and Accuracy of WMRA-I and WMRA-II ... 50

Figure 32: Evaluated User Interfaces: Touch-Screen and Spaceball .. 51

Figure 33: Manipulability Measure of WMRA-I and WMRA-II Robotic Arms 54

www.manaraa.com

vi

Low-Level Programming of a 9-Degree-of-Freedom Wheelchair-Mounted Robotic Arm

with the Application of Different User Interfaces

Punya A. Basnayaka

Abstract

Implementation of C++ and Matlab based control of University of South Florida’s latest

wheelchair-mounted robotic arm (USF WMRA-II), which has 9 degrees-of-freedom, was carried

out under this Master’s thesis research. First, the rotational displacements about the 7 joints of

the robotic arm were calibrated. It was followed by setting the control gains of the motors. Then

existing high-level programs developed using C++ and Matlab for USF WMRA-I were modified for

WMRA-II. The required low-level programs to provide complete kinematics of the joint

movements to the controller board of WMRA-II (Galil DMC-2183) were developed using C++. A

test GUI was developed using C++ to troubleshoot the control program and to evaluate the

operation of the robotic arm. It was found that WMRA-II has higher repeatability, accuracy and

manipulability as well as lower power consumption than WMRA-I. Touch-Screen and Spaceball

user interfaces were successfully implemented to facilitate people with different disabilities.

www.manaraa.com

1

Chapter 1:

Introduction

1.1. Motivation

Wheelchair-Mounted Robotic Arms (WMRAs) are used as assistive devices for people

with manipulative and locomotive disabilities in performing their activities of daily living (ADL).

Based on the combined mobility of the wheelchair and the manipulation of the robotic arm, these

devices provide multiple degrees-of-freedom (DOF) for movement. Since most wheelchairs are

non-holonomic and carry only 2 DOF, the use of robotic arms on the non-holonomic wheelchair

platform can add extra DOF for better manipulation.

The Center for Assistive and Rehabilitation Robotics Technologies at the University of

South Florida (USF) has been working on WMRAs with increased DOF. USF WMRA-I has 9 DOF

(7-DOF robotic arm mounted on a 2-DOF power wheelchair), which give it the capability of

performing sophisticated ADL tasks that the other commercial WMRAs cannot perform. USF

WMRA-II has been fabricated with an improvised robotic arm, which employs more precise

motors and a robust single compact controller board (Galil DMC-2183), with the intention of

enhancing the accuracy of motion. Its workspace has also been expanded by changing the link

lengths to reach objects placed further away.

Development of a WMRA has two major phases; (i) design and fabrication, and (ii)

development of computer programs to control its operation. In programming WMRAs,

communication between hardware (robotic arm and the wheelchair) and software (control

program) is achieved through a controller board. The optimum kinematics for the required motion

is calculated in the software and sent to the controller board, which eventually translates that

information to voltages and currents to be supplied to the motors at each joint. WMRA-II had

been newly fabricated and the control programs had to be developed ensuring that the intended

www.manaraa.com

2

improvements are achieved. Furthermore, accessibility of differently disabled persons to WMRA-

II had to be enabled by integrating suitable user interfaces.

1.2. Thesis Objectives

 WMRA-I had originally been programmed using Matlab, with a C++ dynamic link library

(dll) to communicate with the controller board. Matlab had been used as a convenient tool for

accurate evaluation of mathematical equations and simulation. C++ had been used to

communicate with the controller board, because it is widely used in embedded system

applications as a low-level language that provides fast and efficient execution. However, the

control operation of WMRA-I had been often obstructed by failure of the communication between

the Matlab program and the C++ dll library. Therefore, the programming approach had to be

changed to attain continuous controllability of the robotic arm. The Matlab codes developed to

control WMRA-I were converted to C++ to achieve the above purpose.

Main objective of the research carried out under this thesis was to control the robotic arm

of USF WMRA-II in autonomous mode and in teleoperation using different user interfaces to

enhance the accessibility of people with different disabilities. Since the kinematic arrangement of

WMRA-II is similar to WMRA-I except for the link lengths, WMRA-I’s C++ and Matlab high-level

control programs, which calculate the optimum trajectory for any required motion, could be used

for WMRA-II, after changing the system parameters including the geometrical parameters. Since

the motion controllers are different for WMRA-I and WMRA-II, low-level controller board functions,

which provide complete kinematics of the required motion to WMRA-II controller board (Galil

DMC-2183), had to be developed using C++ and Matlab. The major tasks carried out in achieving

the above objectives are listed below.

1. Tuning the motors of WMRA-II for PID gains to minimize the overshoots and errors.

2. Calibrating rotational displacement at the 7 joints with respect to the encoder

readings of the motors.

3. Developing C++ functions to communicate with the controller board.

www.manaraa.com

3

4. Modifying existing high-level programs for WMRA-I written in C++ and Matlab to use

them for WMRA-II.

5. Developing low-level C++ and Matlab programs to calculate the complete kinematics

of all joints (position, velocity and acceleration in encoder readings) and to

communicate the calculated kinematics to WMRA-II controller board.

6. Testing WMRA-II with the developed C++ and Matlab control programs for accuracy,

repeatability and manipulability.

7. Developing C++ Graphical User Interface (GUI) for Touch-Screen control

8. Evaluating WMRA-II for Spaceball and Touch-Screen user interfaces by using C++

and Matlab programs.

9. Comparing performances of WMRA-I and WMRA-II

10. Implementing a test GUI for individual joint testing and for troubleshooting the robotic

arm.

1.3. Thesis Outline

The rest of this thesis is organized under chapters as mentioned in this outline. Chapter 2

is a brief survey on previous work done on WMRAs, programming languages that have been

used in robots, and other assistive devices used to facilitate disabled people. Chapter 3 describes

the closed-loop control system of WMRA-II. Chapter 4 is on the hardware of WMRA-II, including

the robotic arm, wheelchair and controller board. It also includes the comparison of DH-parameter

of the two WMRAs. Chapter 5 shows how WMRA-II was programmed using C++ and Matlab

languages including the development of controller board functions and the GUI for Touch-Screen

user interface using C++. Chapter 5 also describes calibration of the joint axes of the robotic arm

and PID gains setting of all the motors in the robotic arm. Chapter 6 presents the results from the

testing of WMRA-II with the developed C++ functions and the evaluation of Spaceball and Touch-

Screen user interfaces for controlling the robotic arm. The results obtained for WMRA-II were

compared with those for WMRA-I at the end of Chapter 6. Chapter 7 concludes the thesis.

www.manaraa.com

4

Chapter 2:

Background

The main purpose of developing rehabilitation robot systems is assisting people with

disabilities in their Activities of Daily Living (ADL). The Rancho “Golden” arm, developed at

Rancho Los Amigos Hospital in Downey, California in 1969 is the first successful rehabilitation

robot manipulator found in the history [1]. Although these very first robotic arms were not

extensively used by consumers, they established the foundation for further development in the

field.

Rehabilitation robotic arms are developed to perform common tasks like carrying,

grabbing, picking up and moving objects that a person will encounter in his/her ADL tasks. For

example, robotic arm MANUS [14] is an assistive robot helping numerous ADL to be carried out

in home, at work, and outdoors [12]. Robotic arm KARES [11] helps people with disabilities with

12 tasks of ADL [13].

2.1. Main Types of Rehabilitation Robots

Survey of the different rehabilitation robotic projects shows four main development

concepts of robots in the rehabilitation field [2], [3].

1. Workstation Robots (static robots that operate in a structured environment)

2. Stand alone manipulators

3. Wheelchair-mounted robotic systems

4. Mobile manipulators

www.manaraa.com

5

2.1.1. Workstation Robots

Workstations were the first robots designed for people with disabilities. The purpose was

to give disabled people more autonomy in their daily work. Basically, a workstation is made of a

desk and some shelves where a robotic manipulator is fixed. The robotic arm is programmed to

get some objects, such as a telephone, book, etc. whose positions are perfectly known. DeVAR

(Desktop Vocational Assistant Robot) [4], ProVAR (Professional Vocational Assistant Robot) [5],

RAID (Robot for Assisting the Integration of the Disabled) [6] and Master are some examples of

desks equipped with a robotic arm.

Stanford University built 4 generations of DeVAR systems. DeVAR III was a tabletop

system laid out for daily living tasks, while DeVAR IV was used in a vocational environment.

DeVAR III was successful for tasks like brushing teeth, preparing meals, and shaving. ProVAR

was the successor of DeVAR [5]. It featured a Programmable Universal Machine for Assembly

(PUMA-260) robotic arm and a human prosthetic end-effector mounted on a overhead track

(Figure 1) that provided the open range of access to the object near the user.

Figure 1: ProVAR (track-mounted upside-down PUMA-260) [4]

In an office environment, it is important to combine communication with manipulation,

telephone control, and environmental control. The ProVAR interface included a single command

structure for these three types of tasks. The voice recognition and digitizing card (VOTAN VPC-

2100) allowed calls to be answered automatically in speakerphone mode. The robot could be

commanded to pick up the phone receiver if a private conversation was desired. A computer-

www.manaraa.com

6

interfaced environmental control unit (ECU) based on the X-10 standard allowed control of lights

and small appliances by voice.

 The majority of tasks within the RAID robot domain involved the transfer of physical

media from one location to another. It used the RTX robot to manipulate computer, computer

peripherals (scanner, printer, CDs) and telephone. Wheelchair user controlled RAID through a

joystick which eliminated a mouse to access the user interface.

Figure 2: RAID Workstation Layout [6], [35]

Another type of workstation is low-cost workstations dedicated to self feeding tasks. They

consist of a light weight robotic arm mounted on a special plate that is either put on a table or

mounted on a stand. RAIL [7], Handy-1 [8] developed at, University of Kale, UK and MySpoon

developed at SECOM’s Intelligent Systems Laboratory, Japan [9] are some examples of this type

of systems. Figure 3 shows Handy-I and My Spoon systems. Workstation robots are

mechanically stable but are unable to react to changes in its environment. Main objective of

designing Handy-I was to develop a low cost rehabilitation robotic system capable of being

operated by people with severe disability, enabling them to gain independence in many daily

living activities such as eating and drinking, shaving, cleaning teeth, applying make-up, washing,

playing games and painting and drawing. In 1997 the implementation of sensors to the Handy-1

benefited the eating and drinking attachment and in 1998, the project showed a progress in

drinking and eating.

www.manaraa.com

7

Figure 3: My Spoon (left) and Handy-1 (right) Feeding Aids [8]

Figure 4: Handy-1’s Washing, Shaving and Teeth Cleaning Tray (left) and Make-Up Tray
(right) [8]

2.1.2. Stand Alone Manipulators

Unlike workstation-based systems, stand-alone systems typically use larger robotic

arms to increase the workspace and they are not attached to any object. The work environment is

not fixed as in the case of workstation robots. Sensors are used to get information about the

robot’s environment. The Tou robot [10] developed at the Polytechnic University of Catalunya in

Spain and the ISAC (Intelligent Soft Arm Control) robot developed at the Intelligent Robotics

Laboratory at Vanderbilt University [3] are two examples of stand-alone manipulators.

 Tou is designed to provide tetraplegic people with some autonomy in their daily

activities. It can perform simple tasks such as picking objects and rearranging the bed. The

system consists of a robotic arm built from foam-rubber modules, a personal computer and the

www.manaraa.com

8

communication interface. It uses three different communication interfaces: a speech recognition

system, a joystick and a special keyboard. Tasks performed by ISAC include feeding soup,

feeding fries and assisting in drinking. The user interacts with ISAC through a voice recognition

system. ISAC uses pneumatic actuators called rubbertuators which behave like human muscles.

This allows the robotic arm to have natural compliance.

2.1.3. Wheelchair-Mounted Robotic Systems

These systems allow people with disabilities to feed themselves and reach objects on the

floor, on a table or above the head. Two types of wheelchair-mounted robotic arms are

commercially available. The current market leader of this type is the MANUS (6-DOF robotic arm)

[11] from Exact dynamics as shown in Figure 5. The second one is Rapture (4-DOF robotic arm),

which is produced by the Rehabilitation Technologies Division of the Applied Resources

Corporation. The Manus is a relatively high cost and sophisticated robotic arm whereas the

Rapture robotic arm costs one third of the cost of the Manus, but caries very limited functionality.

Figure 5: Manus Robotic Arm [34], [35]

The Manus robotic arm has been controlled by the devices adapted to people with

disabilities such as smart ball, breath control, movement base control, and joystick [20], [1]. The

Rapture robotic arm [16] is controlled by a key pad and a secondary joystick. MANUS and

Rapture robotic arms have been used by many research institutions to develop WMRA systems

with enhanced performance by incorporating various sensing devices.

www.manaraa.com

9

FRIEND [12] and VICTORIA [15] are another two examples for commercial WMRAs.

Their purpose is to move the robotic arm by using information given by vision sensors. FRIEND I

was developed by the Institute of Automation at the University of Bremen in Germany. It employs

the Manus robotic arm. FRIEND II was the successor of FRIEND I. FRIEND I and FRIEND II

have been controlled using voice commands. FRIEND II has also been controlled with a Brain

Computer Interface (BCI) that reads the user’s electroencephalographic (EEG) signals to control

the robotic arm as shown in Figure 6. On the other hand, VICTORIA sets up a mimic recognition

interface and a Touch-Screen to control the robotic arm.

Figure 6: University of Bremen’s FRIEND II Exhibited at ICORR’07 [35]

The Bath Institute of Mechanical Engineering in the United Kingdom implemented a

custom WMRA called Weston. Weston was a successor of Wolfson, a workstation, and Wessex,

a mobile manipulator [36]. It was designed to maximize the range of manipulation in horizontal

plane and evaluated with four end-users: two spinal cord injury patients and two spinal muscular

atrophy patients. Weston WMRA can be controlled in Cartesian space and in Polar coordinates

and can be programmed with six tasks.

USF WMRA-I has a 7-DOF robotic arm mounted on a power wheelchair. This WMRA is

unique because of its increased DOF. A complete description of USF WMRA-I is given in section

2.5.

www.manaraa.com

10

2.1.4. Mobile Robots

Mobile robot systems navigate autonomously and perform tasks for the user. These

systems are very useful for bed-bound users. WALKY [17], MoVAR, ARPH, HERMES, KARES

11 [13], and CARE-O-BOT are examples of such system. These robots have several

characteristic advantages such as the ability to move independently from the wheelchair, moving

from one room to another to fetch and carry objects, and serving more than one person.

MoVAR, developed at Stanford University, is one of the best known mobile robots.

MoVAR uses DeVAR robot as the arm and omni-directional wheels on a mobile base. MoVAR

was successfully tested by end users for different ADL. A localization system based on cameras

and lasers has been employed on MoVAR to improve task execution in the home environment.

KARES II was successfully tested for 12 tasks including wiping and scratching face, picking up

objects, opening/closing doors, etc. A Visual Servoing module was adapted for vision based

control of the robotic arm, and for a human-friendly interface for face recognition.

Figure 7: Care-O-Bot Serving Food (operated fully autonomously)

2.2. Robot Programming Languages

Robot programming languages have been developed to control robots in different

environments and with different geometrical capabilities. Some of these programming languages

were developed by modifying the general purpose computer languages, and others were

specifically developed for Robots. Robot programming languages can be of three categories [29].

www.manaraa.com

11

1. First generation languages.

2. Second generation languages.

3. World modeling and task-oriented object level languages.

First generation languages provide offline programming and the robot is usually

controlled using a teach pendent. However, they are not capable of handling sensory data except

ON/OFF binary signals and communication with other computers. VAL is one of the examples for

the first generation programming languages. Second generation languages are structured

programming languages with which complex tasks can be programmed. Force and torque

sensors, which are connected to joints and grippers of robots, can be integrated to robot

controller using a second generation language to achieve better motion control. Robots controlled

with these languages behave more intelligently because of advanced sensory capabilities. They

can recover in an event of malfunctioning. VAL-II and RAIL are two examples for second

generation languages. World modeling and task-oriented object level languages are very popular

because of their capability of task oriented controlling. These are general purpose computer

languages. Many sensory devices (e.g. camera, laser, etc.) can be handled with these

languages. They are used to control both industrial and rehabilitation robots using commands or

automatically. Robots programmed with these languages are more intelligent than the others.

C/C++, Matlab and LabVIEW are the most widely used general purpose languages [32].

C/C++ languages have been recently used in controlling many rehabilitation robots such

as MIT Manus, UCF Manus and USF WMRA-I [30]. USF WMRA-I can also be controlled using

Matlab. Robot library for ProVAR assistive robot has been developed using C++ and compiled

with Watcom C/C++ compiler [31]. Some of the implemented functions include matrix operation,

forward kinematics, inverse kinematics, trajectory generation, PID control, TCP/IP communication

and various drivers for low-level hardware (e.g. encoders, force sensors, etc.) communication.

www.manaraa.com

12

2.2.1. C++ Software Architecture of USF WMRA-I

The C++ control algorithm of WMRA-I has two parts; the main script and several

functions supporting the main script. The main script is the stem of the control algorithm and all

the libraries, which are used in supporting functions, are declared first in the main script. They are

followed by the commands for displaying user options. When the options are input, the rest of the

script passes those to supportive functions, where necessary calculations are performed and

results are sent to a function called ArmMotion. This function then builds the communication with

the controller board and sends necessary kinematics data to the controller board.

WMRA-I control algorithm uses both standard built-in C++ libraries (e.g. math, time,

iostream, etc.) and external open source libraries (matrix and vector) [30]. It is a modular type

algorithm that allows modifications. Every supporting function has two files called a header (.h)

file and a source (.cpp) file. The header file consists of function prototypes and other supportive

libraries while, the source file contains the function body including manipulation of data to

calculate necessary outputs as a function return. The arguments and the returns of those

functions are of matrix, vector or scalar data types.

2.2.2. Matlab Software Architecture of USF WMRA-I

Matlab control algorithm also consists of a main script assisted by other supportive

functions. Logic of the program stays the same as that for the C++ control algorithm. However,

the low-level program uses a C++ dll library to communicate with the controller board. The control

algorithm utilizes built-in Matlab functions to perform all the calculations. Matlab control program

is associated with a 3-DOF stick-figure simulation of the WMRA, which generates plots visualizing

the real-time kinematics of the robotic arm and the wheelchair.

Both the control programs have their own pros and cons. It has been found that the

processing time of the C++ algorithm is lower than that of the Matlab algorithm. Therefore, the

C++ control program is more suitable for real-time control applications. However, Matrix

manipulations in C++ are less convenient, and hence some of the C++ functions are more

www.manaraa.com

13

complex and longer than their Matlab counterparts. Furthermore, Matlab control algorithm

provides simulations and plots of the intended operations of the WMRA.

2.3. Human Machine Interface

In general, a complete WMRA system should consist of a main computer, a robotic arm

with its low-level controller, sensors, a power wheelchair, and user interface devices that interact

with the user (Figure 8). It should be able to perform certain predefined tasks autonomously, or

be teleoperated by the user.

Figure 8: Basic Elements of a WMRA System

The ability of a person to understand and manipulate a device is a significant challenge

for people with disabilities. People with disabilities can have a wide range of strengths and

challenges. These differences can be in cognitive ability, sensory impairments, motor dexterity,

behavioral skills, and social skills. Cognitive differences may be seen when a person is

performing tasks that require problem solving or memory skills. Sensory skill issues are evident

when a person has vision or hearing loss, tactile challenges, or difficulty to concentrate in

distracting environments. Motor demands can be a barrier when a task involves isolating

individual fingers, aiming at small targets, or other precise and graded movements. Many tasks

require frustration tolerance, impulse control, turn taking, and other social skills. Devices

designed to assist people with disabilities must take into account the above differences.

www.manaraa.com

14

Generalizations over populations cannot be made for Human-Robot Interaction (HRI) in Assistive

Technology (AT). The same task should be able to be performed in several ways. As the user

adapts to the system, he/she can chose the most comfortable option to perform a certain task. In

other words, each person is unique, and often has his/her own customized solution. For people

with disabilities, the following HRI-AT design guidelines have been proposed by [25].

1. Interfaces should be easy to use without being complex.

2. Interfaces should have minimal length processes.

3. Ability to carry out multi-step processes.

4. Interfaces should adjust prompting levels. A person may require some form of

prompting to perform a process.

5. Interfaces should leverage a person's sensory skills to augment their feedback.

6. Interfaces should accommodate multiple access devices.

According to the user’s level of disability, functional capability and preference, a different

set of human-robot interfaces can be chosen to drive the robotic system in a desirable manner.

Devices, such as Touch-Screen, Spaceball, joystick, microphone and laser pointers are among

user interface devices that can be used in WMRAs as interface devices. Different parts of the

upper body such as fingers, wrist and head can be used to operate different interface devices.

Table 1 illustrates the body parts that are capable of controlling different devices. The symbol √ is

used to indicate that the device can be used appropriately with certain body function. For people

with disabilities, depending on the level of the injury, dexterity may vary from finger motion to wrist

motion to gross robotic arm motion. For example, for upper level Spinal Cord Injured (SCI)

patients, dexterity is only available in the head and neck. So according to table 1, a head tracker,

which is used to detect the movement of the head, can be used as interface devices [20] to

control the robotic arm. Figure 9 shows one of the head trackers that are commercially available

for people with disabilities with little or no control of their hands. This head tracker uses an

infrared beam and according to the head movement, a mouse click events are created in the

computer screen. It can be operated through a USB port of the computer.

www.manaraa.com

15

Figure 9: Head Tracker

Table 1: Interface Devices Matching with Body Functions [20]

Device Fingers Wrist Arm Head/Neck

Touch-Screen √ - - -

Spaceball √ √ - -

Microphone(Speech) √ √ √ √

Joystick √ √ √ -

Head Tracker - - - √

According to some surveys [3] [2], people with disabilities expect robots to give them a

better autonomy in their everyday life. Furthermore, they are concerned about the quality and the

cost of the tools provided by rehabilitation robotics. They demand for safe, reliable and

uncomplicated devices that do not require too much training. Because of their low cost and ease

of use, Handy-1 and MANUS robotic arms have been commercially successful.

All robots mentioned above are equipped with several control modes; manual, automatic

and shared. In [18], it is shown that even though people find automatic and shared modes

interesting, 80% judge the manual mode as a necessity for safety. However, in practice it is too

slow and complicated.

www.manaraa.com

16

2.4. Safety

Safety is one of the key factors when developing assistive systems for disabled people.

Since the user is in close proximity to the assistive robot system the safety issues is very critical.

The hardware of the system should be safe and the software should be very reliable to avoid

unnecessary movements of joints. After designing them, such a system should be evaluated for

safety. Some researchers consider safety as one of the evaluation criteria when they test their

systems [1].

Potentially harmful situations can occur from unexpected movements of the body of the

user or sneezing and coughing. The robotic systems should be able to detect these harmful

situations and react accordingly. In DeVAR, the robot stops and shuts off if the user says ‘stop’

or shouts or if it encounters a resistance higher than a predefined threshold [23]. In USF WMRA-I

two safety measures have been added to the hardware. The first is a panic stop button which is

positioned under the right elbow of the user to stop the power supply to the robotic arm from the

batteries without shutting off the logic power. The second safety measure is the timer. The power

will cut off automatically if the system stays in idle for long time.

2.5. Overview of USF WMRA-I

USF WMRA-I [26] has a 7-DOF robotic arm, a 1- DOF gripper and a non-holonomic

power wheelchair. Figure 10 shows WMRA-I and table 2 presents the specifications of it. WMRA-

I provides a virtual robot interface and separates low-level software and hardware from the high-

level robot control programming. It also provides a set of reusable and portable high-level control

codes. Originally, it was programmed using Matlab and later the complete high-level program was

converted to C++ due to some issues in reliably controlling the devices. Matlab and Virtual Reality

have been used for simulation of WMRA-I.

The main control interface for WMRA-I uses a GUI which is used to control the robotic

arm and the wheelchair in teleoperated mode and in autonomous mode. Other control interfaces

include the Spaceball from which the WMRA-I can be controlled in 6-DOF, and the P300 Brain

www.manaraa.com

17

Computer Interface (BCI) which is being developed in collaboration with the psychology

department at USF. The BCI uses a fitted cap with electrodes mounted on it to sense EEG brain

activities while the user is viewing a series of options on a computer. Other possible methods of

controlling the robotic arm include joystick and the Phantom Omni, which is a six-degree-of-

freedom device that provides a force feedback.

Figure 10: WMRA-I [7]

Table 2: WMRA-I Specifications [26]

Parameter Value

Mass of the robotic arm/(kg) 12.5

Mass of the wheelchair (Including power supply)/(kg) 136

DOF 9

Maximum reachable height above floor/(m) 1.37

Designed payload/(kg) 6

Actuator Type Brush DC servo motors

Controller board Pic-Servo SC

Average Current Draw/(A) 2

Transmission Harmonic drive

Chair width increase with side mount/(cm) 7.5

www.manaraa.com

18

Chapter 3:

Closed Loop Motion Control System of USF WMRA-II

3.1. Introduction

To achieve a full WMRA control, high-level programming is necessary to calculate

Cartesian trajectories, inverse kinematics and optimization based on criteria functions. Then low-

level control is necessary to pass on the commands to the control board and drive the system.

This thesis is continued with the low-level control of WMRA-II, and the high-level control is

outside the scope of this thesis.

A typical closed loop motion control system (a servo control system) should consist of the

main elements shown in Figure 11.

Figure 11: Close Loop Motion Control System Block Diagram

3.2. Motion Controller

The motion controller of WMRA-II (Galil DMC-2183) consists of a digital to analog

converter (DAC) and a digital filter. In the Galil motion controller there are three types of

elements added in series; a PID controller, a low pass filter and a notch filter. All the parameters

in the filters are in terms of proportional gain (KP), integral gain (KI) and derivative gain (KD) of

the PID controller. The signal passing through the DAC is converted to a signal in the range of

+10 V to -10 V. This signal is then amplified (in the Driver shown in Figure 11) and finally sent to

www.manaraa.com

19

the motor. Sending and receiving signals can be done using either both RS-232 or Ethernet

TCP/IP ports. Functions of the motion controller can be listed as follows.

1. Generation of motion profiles in terms of voltage signals

2. Closing the position feedback loop

3. System compensation

4. Input/Output handling

3.3. Motors

Servo motors are used in industry in positioning applications. There are two types of

servo motors used in WMRA-II, namely brushed and brushless DC motors. Brushed motors are

lower in cost and simpler in design. However, the brushes and commutator can wear decreasing

the life time of the motor. Brushless motors are generally capable of carrying more torque, and

gearheads can be used to adjust the torque in these motors. These are more expensive than

brushed motors. Heat dissipation and noise are generally lower in brushless motors. Brushless

motors have been selected for the first 4 links of WMRA-II robotic arm and brushed motors were

selected for the last three links. Each motor of the robotic arm consists of a gear head and a

position sensor.

3.4. Position Sensor (Encoder)

Position sensors are used to get the position feedback of the joints to the control

program. There are two main types of encoders, absolute encoders and incremental encoders or

relative encoders. Absolute encoders provide a unique digital word for any rotational position of a

shaft whereas incremental encoders provide digital pulses with the shaft rotation from which

relative measurements can be obtained. Absolute encoders are used in applications where a

device is inactive for long periods of time or moves at slow speeds. Incremental encoders are

simple in application and also less expensive. The number of square wave cycles produced by an

incremental encoder per complete rotation of the shaft is called the encoder resolution.

www.manaraa.com

20

Servo motors used in WMRA-II (Maxon) include of incremental encoders. These

encoders are usually supplied with two channels (A & B) that are offset from each other by 1/4 of

a cycle (90 degrees). This signal pattern is referred to as quadrature and allows the user to

determine not only the speed of rotation but its direction as well. By examining the phase

relationship between A and B channels, one can determine if the encoder is turning clockwise (B

leads A) or counterclockwise (A leads B). If an incremental encoder giving N number of pulses

per revolution outputs two signals, channel A and B, which are in quadrature, the position

resolution is increased to 4N quadrature counts/rev. The resolution of the encoder can be

represented by a gain of Kf = 4N/2π [count/rad]. Figure 12 illustrates details about an incremental

encoder.

Figure 12: Quadrature Detection of an Encoder and Elements of Optical Encoder [28]

3.5. Computer

This is the place where the control program is stored and run. The users can use various

interface devices such as joystick, Touch-Screen and Spaceball and BCI to input the information.

The computer performs calculations and generates necessary outputs to be sent to the controller.

Data transfer between the user interfaces, the control program and the controller board is

accomplished either through Serial port or Ethernet TCP/IP port.

www.manaraa.com

21

3.6. PID Feedback Controller

A proportional–integral–derivative controller (PID controller) is a generic control loop

feedback mechanism (controller) widely used in industrial control systems. To achieve the best

performance, the PID parameters used in the system must be tuned according to the nature of

the system. The PID controller calculation (algorithm) involves three separate parameters: the

proportional, the integral and derivative values, denoted KP, KI, and KD. The proportional value

determines the reaction to the current error, the integral value determines the reaction based on

the sum of recent errors, and the derivative value determines the reaction based on the rate at

which the error has been changing [38].

The proportional term (KP gain) makes a change to the output that is proportional to the

current error value. The proportional response can be adjusted by multiplying the error by a

constant KP, called the proportional gain. The proportional term is given by equation (1).

���� � �� � �	�
 (1)

The contribution from the integral term is proportional to both the magnitude of the error

and the duration of the error. Summing the instantaneous error over time (integrating the error)

gives the accumulated offset that should have been corrected previously. The accumulated error

is then multiplied by the integral gain and added to the controller output. The magnitude of the

contribution of the integral term to the overall control action is determined by the equation (2).

Equation (3) is the magnitude contribution of the derivative term.

��
� � �� � �	�
���� (2)

���
�� � ��� ��� ���	�
 (3)

Galil controllers provide a compensation filter, which includes a PID (Proportional-

Integral-Derivative) filter followed by a notch filter as shown in Figure 13 [37].

http://en.wikipedia.org/wiki/Control_loop
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Controller_%28control_theory%29
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/PID_controller#Loop_tuning
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Derivative

www.manaraa.com

22

Figure 13: PID Block Diagram of Galil Tuner [37]

3.6.1. Overview of Tuning Methods

There are several methods for tuning a PID loop. The most effective methods generally

involve the development of some form of process model, and then choosing KP, KI, and KD

based on the dynamic model parameters. Manual tuning methods can be relatively inefficient,

particularly if the loops have response times on the order of minutes or longer.

The choice of method will depend largely on whether or not the loop can be taken

"offline" for tuning, and the response time of the system. If the system can be taken offline, the

best tuning method often involves subjecting the system to a step change in input, measuring the

output as a function of time, and using this response to determine the control parameters.

3.6.2. PID Tuning Software

Most modern industrial facilities no longer tune loops using the manual calculation

methods shown above. Instead, PID tuning and loop optimization software are used to ensure

consistent results. These software packages will gather the data, develop process models, and

suggest optimal tuning. Some software packages can even develop tuning by gathering data from

reference changes. [38]

Mathematical PID loop tuning induces an impulse in the system, and then uses the

controlled system's frequency response to design the PID loop values. In loops with response

www.manaraa.com

23

times of several minutes, mathematical loop tuning is recommended, because trial and error can

literally take days just to find a stable set of loop values. Optimal values are harder to find. Some

digital loop controllers offer a self-tuning feature in which very small setpoint changes are sent to

the process, allowing the controller itself to calculate optimal tuning values.

Other formulas are available to tune the loop according to different performance criteria.

Many patented formulas are now embedded within PID tuning software and hardware modules

[38].

www.manaraa.com

24

Chapter 4:

Denavit-Hartenberg Parameters and Hardware of USF WMRA-II

4.1. Denavit-Hartenberg Rules

The position and orientation of a robotic manipulator is described using kinematic

equations. Two different approaches can be taken to express the position.

1. Joint space, which represents the angular position of each joint of the manipulator.

2. Cartesian space, which consists of position (x,y,z) and orientation (α, β, γ

represented by a � � � matrix called the “rotation matrix”) of the end-effector

(gripper) in space.

Forward kinematics can be used to transform coordinates from joint space to Cartesian

space. This transformation depends on the configuration of the robot (i.e. link lengths, joint

positions, type of each joint, etc.). In order to describe the location of each link relative to its

neighboring link, a frame assigned to each link is created, and a set of parameters are specified

to characterize the frame. This representation is called the Denavit-Hartenberg (DH) notation [22].

Application of the DH rules for frame assignment of WMRA-II is briefly explained in this chapter.

There are two versions of DH rules.

1. Proximal

2. Distal

The main difference between the two is labeling of the indices. In this explanation, the

proximal system will be used to find frame assignments. The steps in frame assignment using

proximal labeling system are explained below with the notation shown in Figure 14.

www.manaraa.com

25

1. Identify the joint axes and imagine lines of infinite length along them. For steps 2-5,

consider two of these neighboring lines (at axes i and (i+1)).

2. Identify the common perpendicular between two axes, or if the axes intersect, the

point of their intersection. Assign the link-frame origin at the point of intersection, or at

the point where the common perpendicular meets the ith axis.

3. Assign axis zi pointing along the joint axis i.

4. Assign axis xi pointing along the common perpendicular, or if the axes intersect,

assign xi to be normal to the plane containing the two axes.

5. Assign yi to complete a right-hand coordinate system.

6. Assign {0} to match {1} when the first joint variable is zero. For {N}, choose an origin

location and xN free from the direction, keeping as many linkage parameters as zero.

Figure 14: Link Frames Assignment [22]

If the DH frames are assigned properly, then the definition of the link parameters are as given in

table 3.

www.manaraa.com

26

Table 3: DH-Parameter Description

Parameter symbol Description

ai the distance from zi to zi+1 measured along xi

αi the angle between zi and zi+1 measured about xi

di the distance from xi-1 to ��� measured along zi

θi the angle between xi-1 and xi measured about zi

4.2. DH Parameter Assignment for USF WMRA-II

Figure 15 shows a Solid Works model of WMRA-II and link lengths are in millimeters as

well as the frames assigned to each link. Table 5 shows the modified link lengths of WMRA-II

from those of WMRA-I. Other parameters have been kept the same for the two WMRAs.

Procedure for obtaining forward kinematics and inverse kinematics for WMRA-II robotic arm and

combined mobility and manipulation theory used [26] are similar to those for WMRA-I.

Figure 15: Frame Assignment of WMRA-II

www.manaraa.com

27

Table 4: DH-Parameter Comparison of Two Robotic Arms

i
α(i-1) a(i-1) di ѳi

WMRA-
I

WMRA-
II

WMRA-
I

WMRA-
II

WMRA-
I

WMRA-
II

WMRA-
I

WMRA-
II

1 -90 -90 0 0 110 103 θ 1 θ 1

2 90 90 0 0 146 133 θ 2 θ 2

3 -90 -90 0 0 549 502 θ 3 θ 3

4 90 90 0 0 130 90 θ 4 θ 4

5 -90 -90 0 0 241 375 θ 5 θ 5

6 90 90 0 0 0 0 θ 6 θ 6

7 -90 -90 0 0 179 161 θ 7 θ 7

4.3. Hardware Architecture

WMRA-II system consists of a standard electric wheelchair, a 7 DOF robotic arm, an on-

board controller, a power supply and a tablet PC.

4.3.1. Power Wheelchair

Powered wheelchairs were first developed in early 1970s. The performance of the

wheelchairs is dependent on the weight of the entire system. Conventional wheelchairs are

difficult to maneuver in constrained spaces because they only have two degrees of freedom to

move the wheelchair in a 3-DOF plane.

A number of computer controlled wheelchairs have been developed in recent years,

including CALL Smart Chair, NavChair, TinMan and WALKY [21]. Such chairs use a wide variety

of sensors ranging from cameras, encoders, accelerometers, and gyroscopes with a desired input

device such as communication aids, conventional joysticks, sip and puff switches, pressure pads,

laser pointers, speech recognition systems and force reflecting joysticks.

www.manaraa.com

28

Quickies 626 Wheelchair is the one used for WMRA-II (Figure 16). It is a conventional

wheelchair with 2-DOF differential drive. A joystick is used as the input device to navigate the

chair. Table 5 shows the specifications of this wheelchair.

Figure 16: Quickie 626 Wheelchair

Table 5: Specifications of the Wheelchair

Parameter Value

Overall Length 29"
Overall Width 25"
Weight Capacity 250 (400lb optional)
Overall Weight 128 lb w/o batteries
Operating Voltage 24V
Performance 7 Mph

Although it is a conventional wheelchair, two incremental encoders are mounted on the

wheels to make it a closed loop system. A computer input can also be used to control it.

4.3.2. 7-DOF Robotic Arm

The robotic arm of WMRA-II is similar to that of WMRA-I robotic arm except for the

changes in link lengths and couplings. It was designed by the rehabilitation engineering research

group of USF and fabricated in USF’s machine shops. Figure 17 shows a CAD drawing of the

robotic arm and Figure 18 shows the fabricated robotic arm. The robotic arm was initially

www.manaraa.com

29

fabricated using carbon fiber tubes. Due to its incapability of withstanding considerable torques it

was later fabricated using aluminum. More precise motors were mounted during this second

fabrication to obtain more precise motion.

Figure 17: CAD Drawing of WMRA-II Robotic Arm

Figure 18: WMRA-II Robotic Arm

4.3.3. Power Supply

Both the controller board and the wheelchair use a 24V DC power supply which is a part

of the wheelchair. The power unit is placed under the seat of the wheelchair. Battery life should

be sufficiently long for the system to perform without any trouble.

4.3.4. Controller Board

Motion controller of WMRA-II is Galil DMC-2183. It is capable of controlling a maximum

of 8 motors. Brushless and brushed motors can be controlled simultaneously using this controller.

The driver system to which the controller transfers data in terms of a voltage signal consists of

www.manaraa.com

30

brushless (AMP-20540) and brushed (AMP-20440) motors and two amplifiers. The two amplifiers

are mounted on top of the controller board as shown in Figure 19. Both Serial port and Ethernet

port can be used to communicate with the controller using a PC.

Figure 19: Controller Board (Galil DMC-2183)

www.manaraa.com

31

Chapter 5:

Calibration and Programming of USF WMRA-II

5.1. Axis Calibration of WMRA-II

All the joint angles, which are in radians in the high-level program, should be converted to

encoder counts in order to control the motors of the robotic arm. An experiment was carried out to

find the radians-to-encoder-counts conversion factor for each motor. First, the theoretical number

of encoder counts to run each motor by 180 degree was found from data sheets provided by the

manufactures. Then all the motors were run by the amount obtained from data sheets. Amount of

rotations were recorded for all the joints by using a laser tracker, protractor and a ruler. Then the

theoretical values are adjusted to get the 180 degree movements of each joint.

Motors of the robotic arm were labeled as indicated in Figure 20. Table 6 shows the

information provided by the data sheets and Table 6 contains the theoretical and experimental

conversion factors. It can be seen from Table 7, that the theoretical conversion factors are slightly

different from the experimental ones. The backlash present in the mechanical joints and the gears

in the couplings and axis misalignment can be the reasons for these differences.

Figure 20: Labeling of Motors of the Robotic Arm

www.manaraa.com

32

Table 6: Data from Manufacturer’s Datasheets

Table 7: Radians to Encoder Counts Conversion Factors

Axis Label Theoretical factor Experimental factor

A π�������� π��������
B π�������� π��������
C π�������� π��������
D π�������� π��������
E π�������� π��������
F π�������� π��������
G π�������� π��������

5.2. Calculation of Velocity and Acceleration

Parameters for position controlling were calculated assuming that time and numbers of

encoder counts were known.

 � ! � � (4)

�" � #$% � � �& ' (�) * ��
+ ' #$% � � �& (5)

Solving equations (4) and (5) for velocity v, following expression can be obtained.

 % * ! �) � ' �" � ! � �

 � 	! �)
�� , -.	! �)
% * � � �" � !/�� (6)

Motor label
Encoder

counts per
revolution

Quadrature
type

Gear head
reduction

Harmonic drive
reduction

A 500 yes 51:1 100:1
B 500 yes 51:1 100:1
C 500 yes 51:1 100:1
D 500 yes 51:1 100:1

E 500 yes 19:1 100:1

F 500 yes 19:1 100:1

G 512 yes 14:1 100:1

www.manaraa.com

33

5.2.1. Position Control

Acceleration and velocity can be calculated by considering the trapezoidal velocity profile

as shown in Figure 21. It is assumed that the position (dq) and the total time (T) are given in the

program.

Figure 21: Motion Profile Diagram

Table 8: Motion Profile Parameter Notation

Parameter Description

�" Displacement in encoder counts

! Acceleration of motor

 Velocity

) Total time

� Acceleration time

By considering the real value of velocity, an expression for the acceleration can be calculated.

	! �)
% * � � �" � ! 0 �

1 � 	� � 23
�4% (7)

From equation (7) and (8), the applied velocity was found.

5 � 	� � 23
�4 (8)

www.manaraa.com

34

5.3. PID Gains Setting of WMRA-II

The PID gains of the servo motors have to be adjusted (tuned) so that the motors follow

the input signal as closely as possible. The gains of the system determine how well the servo

system tries to reduce the error. Main purpose behind tuning motors of WMRA-II was to reduce

the overshoots while improving the accuracy of the motion.

PID controllers consist of three gain parameters called proportional gain (KP), integral

gain (KI) and derivative gain (KD). KP value determines the reaction to the current error, KI value

determines the reaction based on the sum of errors, and KD value determines the reaction based

on the rate at which the error is changing. Increasing of KI will increase the overshoot and settling

time. Increasing of KD will decrease both overshoot and settling time. Increasing of KP will

decrease rise time and steady state error, and will increase overshoot.

5.3.1. Tuning Procedure

GalilTools software was used to independently tune all the motors in the robotic arm.

First PID gains were found by using Galil Tuner toolbox of the software shown in Figure 23. Then

all the motors were tuned manually by keeping KI values for all the motors at zero. Data were

recorded for all the motors during both manual and auto tuning. Finally, data were plotted to

compare the step responses. For both tuning processes 100 counts were given within 100 ms.

Ethernet connection was used to record the data from the controller board. The step responses

for motor G are plotted in Figure 22.

www.manaraa.com

35

Figure 22: Step Responses of Motor G

5.3.2. Scope

Scope is another toolbox of the GalilTools software. Scope consists of 8-chanels and

provides real-time visual feedback from the controller in the form of an oscilloscope signal. Eight

different data types including position, position error, and velocity can be viewed from it.

5.3.3. Auto Tuning

The Autotune button, automatically adjusts optimal PID values by selecting axes through

a series of predetermined movements, which may cause the motor to buzz, and finally shows a

step response for the specified counts and time in the scope. Since Autotune provides accurate

results for the default settings in the controller software (for minimum steady state error), manual

tuning is required to obtain specific performances such as minimum overshoot, minimum settling

time, etc.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

time / (sec)

E
nc

od
er

 C
ou

nt
s

Manual Tuning: KP=27, KD=235, KI=0
Auto Tuning: KP=26, KD=200, KI=10

http://en.wikipedia.org/wiki/Oscilloscope

www.manaraa.com

36

Figure 23: Galil Tuner

5.3.4. Manual Tuning

First the KI value of each motor was set to zero and then the KP and KI values were

changed slightly to give a step input to the motors. Data were recorded and compared with values

obtained from the Galil Tuner. It was noted, when the KI was set to zero, the overshoot was

minimum. Therefore, values obtained from manual tuning were assigned in the low-level

program. It can be seen from Figure 22, that overshoots and errors have been reduced by

manual tuning when motor G was commanded to go to 100 encoder counts within 100 ms.

Since the payload is changing from one task to another, all the motors were tuned for

three different payloads and the average values were found. Table 9 shows the average gain

values obtained for three different payloads 1, 2 and 3.5 kg.

Table 9: PID Gain Parameters of Motors

Motor KP (proportional gain) KD (derivative gain) KI (integral gain)

A 35 260 0

B 5 50 0

C 5 50 0

D 5 50 0

E 31 233 0

F 30 239 0

G 27 235 0

H 2 30 0

www.manaraa.com

37

5.4. C++ Based Programming

C++ is one of the widely used programming languages at present. The language has

been around for several decades and has won widespread acceptance because it gives

programmers maximum control and efficiency. However, in controlling USF WMRA-I, C++ had

only been used in the dll library functions that were used to physically communicate with the

robotic arm. Matlab had been used as the programming language for major control tasks, which

include optimization and calculation of kinematics, as well as for simulation. Various run time

issues were encountered when the initial programs in Matlab were used to control the WMRA-I.

Therefore, these Matlab programs were later converted to C++ in search of smooth and reliable

control of WMRA-I. The concepts of kinematics and the control algorithms were not changed in

this process. Visual Studio 2008 has been used to write all the C++ programs and its compiler

was used to compile the program. The architecture of WMRA-II control software consists of three

main layers:

1. User interface layer: Sends the required information to the high-level controller using

an input device (Spaceball, Touch-Screen, joystick, etc.)

2. High-level control layer: Translates the user input into the input to the low-level

controller of the output device (WMRA). In this layer, all the kinematic equations and

optimization algorithms are included.

3. Low-level control layer: Deals with specific characteristics of the controller board of

the output device and its communication protocol.

5.5. High-Level Control Programming

This includes the main script and several supporting functions that calculate kinematics,

motion optimization algorithms and trajectory generation algorithms to control the robotic arm.

The final output from the high-level program should be the accurate position of each and every

motor for each time step within the trajectory.

www.manaraa.com

38

C++ high-level program for WMRA-I was modified to suit WMRA-II. DH-parameters,

wheelchair dimensions and joint limit constraints are among the modified parameters in the

control program. The prototypes of the functions that include the ArmMotion function to

communicate with the robotic arm were used in the newly developed controller board program

after modifying them appropriately.

Table 10: Prototypes of WMRA-I and WMRA-II C++ Functions

WMRA Function prototype

WMRA-I void WMRA_park2ready(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qiwc)

WMRA-II void WMRA_park2ready(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qiwc,
Galil &g)

As shown in Table 10, the controller board function parameters for WMRA-II are passed

by reference to the variable “g” whereas in WMRA-I all the parameters are passed by their

values. The functions for the controller board were implemented using part of the Galil dll library.

5.6. C++ Low-Level Control Programming

ArmMotion function is the function that physically communicates with the robotic arm. It

calculates necessary kinematic parameters (position, velocity, acceleration, and deceleration)

based on encoder values and sends those parameters to the controller board for execution. The

first part of the function consists of initialization of the controller board. During the initialization,

PID gains are set and the controller board is set for the position tracking mode. The ArmMotion

function prototype is different for WMRA-I and WMRA-II as indicated in Table 11.

Table 11: C++ Function Prototypes of ArmMotion Function

WMRAs Function prototype

WMRA-I Matrix WMRA_ARM_Motion(int ind, int config, Matrix qo, float dt)

WMRA-II Matrix WMRA_ARM_Motion(int ind, int config, Matrix qo, float dt, Galil &g)

 In the low-level layer, C++ functions were created to communicate with all the motors in

WMRA-II using serial communication. In order to reach the required position at a given time,

www.manaraa.com

39

motion parameters of each joint should be found for all the motors. Since the controller board

used in WMRA-II is different from that of WMRA-I, all C++ functions for the motion controller were

separately developed.

 Galil motion controller board manufactures have developed a set of C++ communication

functions. Parts of their codes were used to develop functions for WMRA-II controller board. The

C++ controller board functions that were developed can be categorized under following major

categories.

5.6.1. Establishing the Communication of the Controller Board

Communication can be achieved using both serial and Ethernet ports. For serial port

communication, there are two parameters that should be selected to complete the function.

These are,

• Com port: A port in the CPU where serial port cable is connected to the peripheral

device (Galil motion controller). RS-232 is used to serially communicate between

controller board and the PC.

• Baud rate: Baud rate is a measure of how fast the data is transferred between an

instrument and a CPU using serial communication.

‘Galil g (COM2 19200)’ is an example function call for serial communication. The serial cable is

connected to communication port 2 and the data transfer rate is selected as 19200 by this

command.

Ethernet communication is very useful in data recording since its sampling period is

higher than that for serial communication. If Ethernet TCP/IP is used to communicate with the

controller boadr, the IP address, which is a 4-byte number, should be assigned to the Ethernet

port before starting communication. The last two bytes of the IP address represent the two digit

number of the controller board. ‘Galil g (124.51.21.83)’ is an example function call for Ethernet

port communication.

www.manaraa.com

40

5.6.2. Parameter Initialization

• PID gain settings

PID gain settings are done under parameter initialization. In this process, proportional,

integral and derivative gains are set for each and every axis. All eight motors must be tuned for

PID gains before using these functions. The procedure for finding the gains is explained in

section 5.3 of this thesis.

Table 12: C++ Controller Board Function for PID Gains Setting

Function Prototype Example

void PID(char PID_motor, float KP_value,float KD_value,float
KI_value, Galil &g) PID('A',6,64,0, g)

• Amplifier gain setting

This function is used to increase the bandwidth of the amplifier.

• Brushed and brushless axes settings

Both brushed and brushless motors are used in WMRA-II robotic arm. These functions

are used to set each axis as brushless or brushed.

5.6.3. Motion Control Functions

Parameters given by the high-level program are the time steps, the total time to execute

the task and the corresponding amounts of rotation for all the axes in radians. The low-level

program should be able to create a motion profile based on the output of the high-level control

program. Motion control functions developed for this purpose generate a motion profile that is

sent to the motors in terms of voltages. Motion profiling can be done using both position

controlling and velocity controlling.

1. Position control function

Figure 24 shows a sample velocity profiles for position control. The function developed

for position control is shown in Table 13. Parameters used in the position control functions are,

position, velocity, acceleration and deceleration.

www.manaraa.com

41

Figure 24: Position and Velocity Profiles for Position Control

Table 13: Controller Board Function for Position Control

Function prototype Description

void Position_control(char motor,long int
p_value,long int v_value, long int a_value, Galil
&g)

Position_control('A',100000,20000,20000,
g);

2. Velocity control function

Parameters used in the velocity control functions are, velocity, acceleration and deceleration.

5.6.4. Data Record

These functions are used for obtaining the position, velocity and torque values from the

motion controller so that they can be used to minimize the position error and to keep track of the

position, velocity or torque of each axis. Table 14 shows an example of the data record function.

Table 14: Function Example of Data Record

Function prototype Example

float Tell_pos(char motor, Galil &g) Tell_pos('A', g)

www.manaraa.com

42

5.7. Matlab Low-Level Control Programming

Matlab low-level control program calculates all the kinematic parameters that the

corresponding C++ program calculates. However, Matlab uses Component Object Model (COM)

technology, which enables software components to communicate with each other, to link C++

functions to Matlab low-level program. All the parameters calculated must be converted to string

type from numeric type before assigning them in C++ functions. This makes Matlab low-level

program longer than the C++ program. Matlab built-in functions were used for converting

parameter types and creating an instance of COM object.

5.8. User Interfaces

5.8.1. Touch-Screen

Users with different disabilities and individual needs, have to be considered in developing

assistive systems. Touch-Screen is the GUI that can be used to control the robotic arm in

teleoperated mode. Touch-Screen GUI implemented using C++ for USF WMRA-II is shown in

Figure 25. In this interface a seven element vector written to a text file is used to pass the input

data to the WMRA main program. When one or more buttons are selected, the corresponding

elements of the vector are changed between 0 and 1, and the corresponding vector is written into

the text file. The main program reads those values in real-time to update the motion.

There are two types of buttons used in the Touch-Screen GUI. Command buttons were

used for Back, Exit and Stop operations. Check buttons were used to create all the other buttons.

Mouse click events were created to pass the variable values to the main program. Properties of

each button (size, location, fonts, background color, etc.) were selected from the available

property editor which allows any required changes in the future. C++ codes related to the Touch-

Screen GUI are given in Appendix B.

www.manaraa.com

43

Figure 25: Screen Shot of Touch-Screen Control User Interface

5.8.2. Spaceball

Figure 26 shows a picture of a Spaceball. This device has three independent force

sensors and three independent torque sensors to provide 6-DOF to represent an arbitrary

position of a solid body in space. The Spaceball was originally developed to give 3D designers

the ability to pan, spin, zoom, rotate and analyze their designs on the computer. Later it was used

in controlling of robotic arms. By pushing and twisting the Spaceball, the robotic arm can be

moved in the 3D space.

A demo program included in the Software Development Kit (SDK) called 3DxTest32

supplied by the manufacturer of the Spaceball was used to extract special data to be used in the

WMRA-II control program. When the demo program is opened it creates a window on which the

Spaceball movement data are written. Then these data are extracted to a text file as characters

and the C++ WMRA-II program reads these data and converts the characters to numbers that are

eventually used in the main program.

www.manaraa.com

44

Figure 26: Spaceball and Its Demo Program Window

When the Spacball is used in Matlab, a separate Matlab demo program has to be used. A

Matlab application is opened (Figure 27) automatically when the user opens the demo application

program. The WMRA-II Matlab program should be run from the already opened Matlab command

window so that both Matlab and Spaceball program share common global variables during the

operation.

Figure 27: Matlab-Spaceball Program Window

5.9. Test GUI for WMRA-II

The joints of the robotic arm have to be operated individually for troubleshooting. When

GalilTools software is used with Galil two-letter programming language for this purpose, the

program has to be repeatedly changed for each joint. Therefore, a test GUI was separately

developed to facilitate testing of the robotic arm operation. Figure 28 shows the developed GUI.

This GUI avoids above mentioned difficulties in individual movement of joints during

troubleshooting. In the test GUI, two separate buttons are implemented for clockwise and

www.manaraa.com

45

counterclockwise operation of each motor. Separate group of buttons are implemented to open,

close and stop the gripper.

Figure 28: Test GUI for WMRA-II

www.manaraa.com

46

Chapter 6:

Testing and Evaluation of WMRA-II

6.1. Power Usage of the Robotic Arm

The system specifications for WMRA-II obtained by testing are given in Table 15.

Table 15: System Specifications of WMRA-II

Mass of the robotic arm/(kg) 13.63

Mass of the wheelchair (not Including power
supply)/(kg)

58

DOF 9

Maximum reachable height above floor/(m) 1.47

Designed payload/(kg) 3.85

Average current draw/(A) 1.75

Actuator type Brushed and brushless DC servo motors

Controller board
Galil motion controller (DMC-2183) with two
amplifiers for brushed and brushless motors

Power usage of the robotic arm and the whole system determines the battery life. The 24

V battery system of WMRA-II wheelchair, powers both the robotic arm and the wheelchair. As an

indication of the power consumption, the electric current was recorded for the two cases in which

the robotic arm was at rest and while it was running under the conditions given in Table 16.

Power consumption of WMRA-II is compared with that of WMRA-I in Table 17.

www.manaraa.com

47

Table 16: Power Usage of WMRA-II

Condition Average Current / (A)

Idle - Controller only (all the motors off) 0.25
Holding self weight outstretched 1.25
Simultaneous movement of joints (without payload) 1.45
Simultaneous movement of joint with 2 kg payload 1.75
Lifting 6Kg with joint 1 1.75

It can be noted that WMRA-II consumes less power when it is in the idle state. However,

batteries of the wheelchair can conserve power by implementing a timer that cuts off the power to

the controller board when the robotic arm is in the idle state. During operation, WMRA-II

consumes less power than WMRA-I.

Table 17: Power Consumption Comparison of WMRA-II with WMRA-I

6.2. Repeatability and Accuracy of the Robotic Arm

The accuracy refers to the robot’s ability to accurately position its wrist end at a desired

target point within its work volume. Repeatability is a statistical term associated with accuracy and

it describes how a point is repeated. By keeping equal conditions, the robot can be moved to a

certain point a number of times to calculate the repeatability error. It does not describe the error

with respect to absolute coordinates. It is a positional deviation from the average of displacement

[33]. Figure 29 shows a representation of accuracy and repeatability.

Condition WMRA-II WMRA-I

Idling 0.25 0.36

Holding self-weight outstretched 1.25 0.58

Lifting 6Kg with joint 1 1.75 3.30

www.manaraa.com

48

Figure 29: Representation of Accuracy and Repeatability [33]

The formulas that calculate accuracy and repeatability of the robotic arm are shown in

equation (5), (6) and (7).

6778917: � �
; .	<=><
?

@
ABC

D �� (5)

EFGF1H1IJKJH:� � �
; .	<=><
LLL?

@
ABC

D

 (6)

Finally, relative true error was calculated using equation (7).

EFK1HJ5F�H98F�F99M9 � � NOOPQROSTQPU�VRWPU (7)

6.2.1. Methodology

 WMRA’s are designed to perform daily living activities and therefore they should be

reliable, accurate and repeatable. As a test of repeatability and accuracy, five positions as shown

in the Table 18 were selected (without changing the orientation of the end-effector) and the two

robotic arms were commanded to travel from the same ready position to each target position five

www.manaraa.com

49

times. All the user options such as operation velocity, method of optimization, etc were kept as

constants for all the trials. All the measurements were made based on the robotic arm base

coordinate systems (Figure 30) and the data were recorded. Laser pointer was attached to a

gripper of the arm to measure the vertical distance travelled (Which is z axis w.r.t arm base

coordinate system) by the dripper. X and y coordinates were drawn on the floor and WMRAs

were positioned properly on the drawn coordinate. X and Y distances travel by the gripper were

measured.

Table 18: Selected Points for the Accuracy and Repeatability Test

No of points x-y-z Coordinate

1 (700,200,700)
2 (200,700,700)
3 (1000,500,300)
4 (550,300,900)

5 (850,950,500)

Figure 30: Experimental Setup for Repeatability and Accuracy Test

www.manaraa.com

50

Figure 31: Repeatability and Accuracy of WMRA-I and WMRA-II

According to Figure 31, both WMRA-II and WMRA-I show reasonable repeatability.

However, WMRA-II always recorded considerably less repeatability and percentage relative error

than WMRA-I as shown in Table 19 and 20 respectively.

Table 19: Repeatability Comparison of WMRA-I and WMRA-II

Coordinate WMRA-I(Average Repeatability) /
mm

WMRA-II(Average repeatability) /
mm

X 2.69 1.38
Y 2.03 1.02
Z 1.92 1.03

Table 20: Average Percentage Relative Error of WMRA-I and WMRA-II

Coordinate WMRA-I(Average % Relative
error) / %

WMRA-II(Average % Relative
error) / %

X 5.10 4.39
Y 5.22 4.42
Z 6.38 5.50

200 300 400 500 600 700 800 900 1000
3.5

4

4.5

5

5.5

6

x-Axis Position / (mm)

R
el

at
iv

e
%

 E
rr

or

200 300 400 500 600 700 800 900 1000
2

3

4

5

6

7

y-Axis Position / (mm)

R
el

at
iv

e
%

 E
rr

or

200 300 400 500 600 700 800 900
2

4

6

8

10

z-Axis Position / (mm)

R
el

at
iv

e
%

 E
rr

or

WMRA-I WMRA-II

200 300 400 500 600 700 800 900 1000
0

1

2

3

4

x-Axis Position / (mm)

R
ep

ea
ta

bi
lit

y

200 300 400 500 600 700 800 900 1000
0

1

2

3

4

y-Axis Position / (mm)

R
ep

ea
ta

bi
lit

y

200 300 400 500 600 700 800 900
0

1

2

3

z-Axis Position / (mm)
R

ep
ea

ta
bi

lit
y

www.manaraa.com

51

According to above results both accuracy and repeatability of WMRA-II are higher than

those for WMRA-I. Both of the systems were tested using the same C++ control algorithm and

the same communication protocol (RS-232) was used to communicate with the controller board.

Main differences are in the controller boards and the motors used in the two robotic arms.

WMRA-II consists of the Galil motion controller (24 V DC) with two separate driver units for

brushed and brushless motors and WMRA-I consists of the JRKERR PIC servo SC controller

(12V DC) with separate driver unit for each motor. The motors used in WMRA-II are more precise

than those used in WMRA-I.

The final accuracy in a robotic arm depends on the control program resolution and the

measuring system. The mechanical inaccuracies are mainly caused by the backlash in the robotic

arm joints and backlash in the gear mechanisms of the robotic arm. The measuring system with a

laser tracker, a level and a ruler with a white board may have caused some errors during the

measurements.

6.3. Use of Different Interfaces

Since this is preliminary testing stage of the WMRA-II, due to safety concerns, the system

was tested without a user being seated on the wheelchair. Spaceball and Touch-Screen were the

different interfaces used to run the robotic arm.

Figure 32: Evaluated User Interfaces: Touch-Screen and Spaceball

www.manaraa.com

52

6.3.1. Touch-Screen Evaluation

Touch-Screen is one of the popular and convenient user interface used in assistive

devices. Its graphical user interface should be simple enough to provide directions to control the

robotic arm as desired. As mentioned in Chapter 5, it provides buttons indicating directions of

movement of the end-effector so that the users can clearly visualize and identify which buttons to

be used to achieve the desired motion. In order to begin the motion, the user should click on the

proper buttons that provide the required direction of motion and select Run button to move the

robotic arm. Stop button of the Touch-Screen should be clicked if the user wants to stop the

motion. An Exit button is provided to exit from the Touch-Screen user interface.

6.3.1.1. Testing Procedure and Results

First the Touch-Screen was separately evaluated for three translations and rotations of

the end-effector using both C++ and Matlab control programs. Then it was tested for combined

motion of the end-effector such as three translations, two translations and one rotation, etc. It was

tested for different cases of combined motion with different speeds of the end-effector. The

robotic arm could be moved successfully to the intended directions.

6.3.2. Spaceball Evaluation

For some users who do not have enough dexterity in their finger movement, Touch-

Screen is not a convenient interface to control the robotic arm. Spaceball, which is a device that

consist of a ball and sensors to detect its 6-DOF motion, can be helpful in such situations (see

section 5.8.2). By using the Spaceball, the user can separately control three translations and

three rotation of the gripper. However, the user should be trained properly before using the

Spaceball to move the robotic arm. Gripper open and close operations cannot be performed

using the Spaceball. The gripper operation can be programmed to the buttons available on the

spaceball.

www.manaraa.com

53

6.3.2.1. Testing Procedure and Results

First, the coordinate system of the gripper was mapped to match the coordinate system

at the base of the robotic arm. Then the Spaceball could be easily tested for forward, backward,

left and right motion of the robotic arm. These directions were selected according to conventional

description of movement of the robotic arm for a user sitting on the wheelchair.

Sensitivity of the Spaceball motion can be set from the Spaceball software or from the

twelve-way buttons. Accuracy of the displacement reading of the Spaceball, maximum value for

each translation and rotation, and the rate of change of the Spaceball movement are important in

deciding the movement of the robotic arm. Sensitivity of the Spaceball was adjusted using a trial

and error procedure. Finally, the Spaceball was tested for the robotic arm motion for independent

translation and rotation.

It was noticed that the response delay is high when using Matlab program than C++

program. This is because both Spacball and Matlab programs share common global variables

and it will take some time to pass the Spaceball variable to Matlab programs. Also Matlab take

longer time to interpret the codes.

6.4. Manipulability Measure of WMRA-II

Manipulability measure can be used as a criterion to be maximized to place the robotic

arm in a configuration far from its singular configurations and to ensure dexterous manipulation.

The method proposed by Yoshikawa [26] was used in this work to calculate the manipulability

measure. When the manipulator is redundant, infinite solutions exist for the inverse kinematics. In

this case, criteria are needed in order to extract the best solution to run the robotic arm.

Manipulability of WMRA-I and WMRA-II were evaluated and compared for several

positions in the workspace using an already developed Matlab simulation. When both robotic

arms were in ready position [90, 90, 90, 0,-90, 0], it was found that the manipulability measure for

WMRA-II is higher than that for WMRA-I. Furthermore, for the selected end-effector positions,

WMRA-II showed higher manipulability measures during the motion. Figure 33 shows the details

www.manaraa.com

54

of how manipulability measure changed when the end-effector moved from ready position to

selected positions with respect to wheelchair base frame coordinate system.

Figure 33: Manipulability Measure of WMRA-I and WMRA-II Robotic Arms

0 10 20 30 40
0

0.5

1

1.5

2

2.5

3
x 10

8 (a). (700, 200, 700)

time / (sec)

M
an

ip
ul

ab
ili

ty
 M

ea
su

re

0 10 20 30 40
0

0.5

1

1.5

2

2.5
x 10

8 (b). (200, 700, 200)

time / (sec)

M
an

ip
ul

ab
ili

ty
 M

ea
su

re

0 10 20 30 40
1

1.5

2

2.5

3
x 10

8 (c). (1000, 500, 300)

time / (sec)

M
an

ip
ul

ab
ili

ty
 M

ea
su

re

0 5 10 15
0.5

1

1.5

2

2.5

3
x 10

8 (d). (550, -300, 900)

time / (sec)

M
an

ip
ul

ab
ili

ty
 M

ea
su

re

WMRA-I WMRA-II

www.manaraa.com

55

Chapter 7:

Conclusion

Research carried out in this thesis yielded satisfactory results in controlling and testing an

assistive robotic wheelchair system (USF WMRA-II) that can be integrated into the everyday life

of people with disabilities. The outcome of this research can be summarized as follows.

1. The robotic arm of USF WMRA-II was successfully controlled using not only C++ but

also Matlab programming languages.

2. USF WMRA-II was tested in autonomous mode as well as using Touch-Screen and

Spaceball as convenient user interfaces. It was identified that the Touch-Screen

control is more satisfactory than the Spaceball control, because, Spaceball requires

more training and it should be calibrated depending on the disability level of the user.

Touch-Screen requires minimal or no training and provides clear and simple insight

to the user. However, motion of the WMRA-I for both Touch-Screen and Spaceball

was found to be less smooth and less reliable.

3. It was found that WMRA-II is more repeatable and accurate in performance than

WMRA-I.

4. Manipulability measure of WMRA-II is higher when it is in its ready position. It also

showed higher manipulability measures for most of the predefined positions.

5. WMRA-I consumes less power when it is in idle and during the motion. The power

usage of the system mainly depends on payload on the gripper, type of motors used

in the arm and the type of the controller board used. When WMRA-II is holding its

own weight it consumes more power than WMRA-I. This is because weight of the

WMRA-II is higher than WMRA-I and torque applies on motors are high in WMRA-II.

www.manaraa.com

56

Many improvements can be done to the system to increase the capacity and quality of

doing ADL tasks. Wheelchair controllers have to be integrated to the control algorithm. So that

the capability of performing combined motion tasks such as opening a door can be achieved.

Further force/torque sensors should be added to control the compliance of the system when

performing tasks like opening a door. User evaluation can be done for ADL tasks. Sensors for

collision avoidance and autonomous navigation can also integrate to make the system more

intelligent.

www.manaraa.com

57

References

[1] J R Allen, A Karchak, and E.L. Bontrager, “Design and fabrication of a pair of Rancho
anthropomorphic arm”, Technical report, Rancho Loas Amigos Hospital, Inc, 1972

[2] Z.Zenn Bien, Dimitar Stefanov “Advances in Rehabilitation Robotics”, Vol. 306, pp. 25, 2004

[3] K. Kawamura and M. Iskarous, “Trends in service robots for the disabled and the elderly”,
Special session for the disabled and elderly people, 1994.

[4] H.F. Machiel Van der Loos “Lesson learned in the application of robotics technology to the
field of rehabilitation”, IEEE Transaction on Rehabiliatation Engineering, Vol. 3, No. 1, pp 46-55,
1995.

[5] H.F.M Van der Loos, J.J Wanger, N. Smaby, K. Chang, O. Madrigal, L.J. Leifer and O.Khotib,
“ProVAR assistive robot system architecture”, IEEE International Conference on Robotics and
Automation, 1999.

[6] T. Jones, “Raid: Toward greater independence in the office and home environment.” IEEE
International Conference on Rehabilitation Robotics”, pp 201-206, 1999.

[7] Kevin Edwards, Redwan Alqasemi, Rajiv Dubey, “Design, Construction and Testing of a
Wheelchair-Mounted Robotic Arm", Proceedings of the 2006 IEEE International Conference on
Robotics and Automation,2006.

[8] M. Topping, "An Overview of the Development of Handy 1, a Rehabilitation Robot to Assist
the Severely Disabled”, Journal of Intelligent and Robotic Systems, pp. 253, 2002.

[9] S.Ishii, S. Tanaka, and F. Hiramatsu, “Meal assistance robot for severely handicapped
people”, IEEE Conference on Rehabilitation and Automation, pp.1308 1995.

[10] A. Casals, R. Villa, and D. Casals, “A soft assistance arm for telegraphic”, 1st TIDE cong.,
pp. 103, 1993.

[11] H. Eftring and K. Boschiann, “Technical results from Manus user trials”, IEEE Conference on
Rehabilitation robotics, pp. 136, 1999.

[12] N. Suzuki, K. Masamune, I. Sakuma, " System assisting walking and carrying daily
necessities with an overhead robot arm for in- home elderlies" IEEE Int. Conf. on Engineering
and Medicine and Biology. Vol. 3. pp. 3371, 2000.

[13] Z.N. Bien, M. J. Chung, P.H. Chang, D.S. kwon, “ Integration of a Rehabilitation Robotic
System (KARES 11) with Human-Friendly Man-Machine Interaction Units”, Autonomous Robots,
Vol.16, No.2. pp. 165, 2004.

www.manaraa.com

58

[14] H.H. Duimel Kwee, Tuinhofde Moed and J.A. Van Woerden, “The manus wheelchair-borne
manipulator: System Review and first results”, In IARP, 2nd Workshop Medical and Healthcare
Robotics, pp. 385, 1989.

[15] F. Bley, M. Rous, U. Canzler, and K. Karl-Frieddrich, “Supervised navigation and
manipulation for impaired wheelchair users”, IEEE Transaction on Machine Man and Cybernetics,
pp. 152, 2004.

[16] R. Mahoney, “The raptor wheelchair robot system”, IEEE International Conference on
Rehabilitation Robotics”, pp 135, 2001.

[17] H. Neveryd, G. Bolmsj. Walky, “An ultrasonic navigating mobile robot for the disabiled”,
TIDE, pp. 366, 1995.

[18] M.Busnel, R Cammoun, F. Coulon-Lauture, j-M Detriche, G Le Claire, and B.Lasigne, “The
robotized workstation master for users with tetraplegia: Description and Evaluation" Journal of
Rehabilitation Research and Development” Vol. 36, No. 3, 1999.

[19] S.D. Prior , “A Review of World Rehabilitation Robotics”, Middlesex Polytechnic internal
report, 1989.

[20] Dae-Jin Kim Aman Behal, “Human-in-the-Loop Control of an Assistive Robotic Arm in
Unstructured Environments for Spinal Cord Injured Users”, 4th ACM/IEEE International
Conference on Human Robot Interaction, pp. 285, 2009.

[21] Vijay Kumar, “Assistive Devices For People With Motor Disabilities”, Wiley Encyclopedia of
Electrical and Electronics Engineering, 1997.

[22] John J. Craid, "Introduction to Robotics”, Third Edition, 1989.

[23] H.L Iiassler, “Robotics for health care: A review of the literature,” Robotica, vol. 11, pp. 495,
1993.

[24] Noriyuki Tejima, “Evaluation of Rehabilitation Robots for Eating”, IEEE International
Workshop on Robot and Human Communication , pp. 118, 1996.

[25] Katherine Tsui and Holly Yanco, David Kontak and Linda Beliveau, "Development and
Evaluation of a Flexible Interface for a Wheelchair Mounted Robotic Arm", HRI, 2008.

[26] Redwan M. Alqasemi, "Maximizing Manupulation Capabilites of Persons with DIsabilities
Using a Smatrt 9-Degree-of-Freedom Wheelchair-Mounted Robotic Arm System ", University of
South Florida, 2007.

[27] Galil motion controller user manual

[28] http://www.motion-control-info.com/optical-encoder_design_guide.html

[29] S.R. Deb, "Robotics technology and flexible automation", 1994.

www.manaraa.com

59

[30] Ana Catalina Torres Rocco, “Development and Testing of a New C-Based Algorithm to
Control a 9-Degree-of-Freedom Wheelchair-Mounted-Robotic-Arm System", University of South
Florida, 2010.

[31] Van der Loos, H. F. M., Wagne, J. J., Smaby, N., 1999, "ProVAR Assistive Robot System
Architecture", International Conference on Robotics and Automation, pp. 741,1999.

[32] Machiel, H. F., and Van, d. L., 2000, "Immersive user environments in rehabilitation robotics
and mechatronics", Artificial Life and Robotics, Vol. 4, pp. 176, 2006.

[33] Ahmad Rasdan Ismail Azmi, Hassan Syamimi Syamsuddin, Mohd Zaki Nuawi, Shahrum
Abdullah, Hairunnisa Mohamad Ibrahim, "The performance analysis of industrial robot under
loaded conditions and various distance", 8th WSEAS International Conference on Robotics,
Control and Manufacturing Technology, pp.75,2008.

[34] Axel Graser, “Technological Solutions to Autonomous Robot Control”, TIDE, 1998.

[35] Katherine M. Tsui, "Design and Evaluation of a Visual Control Interface of a Wheelchair
Mounted Robotic Arm for Users with Cognitive Impairments", University of Massachusetts Lowell,
2008.

[36] Michael Hillman, Karen Hagan, Sean Hagan, Jill Jepson, Roger Orpwood, "The Weston
Wheelchair Mounted Assistive Robot - The Design Story", Robotica, Vol. 20, pp. 125, 2002.

[37] http://www.galilmc.com/catalog/techref.pdf

[38] kiam heong ang, gregory chongpid,"control system analysis, design, and technology" IEEE
Transactions on ontrol systems technology, Vol. 13, No. 4, 2005.

http://www.springerlink.com/content/112249/?p=151dcd6f3c7948169b8bb98c1c87b2f2&pi=0
http://portal.acm.org/author_page.cfm?id=81375601023&coll=GUIDE&dl=GUIDE&trk=0&CFID=92760718&CFTOKEN=66490511
http://portal.acm.org/author_page.cfm?id=81375614366&coll=GUIDE&dl=GUIDE&trk=0&CFID=92760718&CFTOKEN=66490511
http://portal.acm.org/author_page.cfm?id=81375619785&coll=GUIDE&dl=GUIDE&trk=0&CFID=92760718&CFTOKEN=66490511
http://portal.acm.org/author_page.cfm?id=81367597945&coll=GUIDE&dl=GUIDE&trk=0&CFID=92760718&CFTOKEN=66490511
http://portal.acm.org/author_page.cfm?id=81350573436&coll=GUIDE&dl=GUIDE&trk=0&CFID=92760718&CFTOKEN=66490511
http://portal.acm.org/author_page.cfm?id=81350573436&coll=GUIDE&dl=GUIDE&trk=0&CFID=92760718&CFTOKEN=66490511
http://portal.acm.org/author_page.cfm?id=81375613122&coll=GUIDE&dl=GUIDE&trk=0&CFID=92760718&CFTOKEN=66490511

www.manaraa.com

60

Appendices

www.manaraa.com

61

Appendix A. C++ Programs

/* This "new USF WMRA" function SIMULATES the arm going from any position to the ready
position with ANIMATION. All angles are in Radians.
The ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]] (Radians).
ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 -
-> close the figures.

%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%Modified By: Ana Catalina Torres & Punya A. Basnayaka %%%%%%%%%%
%%% June 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Function Declaration:*/

#include "matrix.h"
#include "any2ready.h"
#include "ArmMotion.h"
#include "DH.h"
#include "q2T.h"
#include <time.h>
using namespace std;
using namespace math;

void WMRA_any2ready(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qi, Galil &g){
Matrix zero(1,1);
zero.Null(1,1);
 if (ini==3){
 if (arm==1){
 try {
 WMRA_ARM_Motion(ini, 0, zero, 0, g);
 cout<< "any ini "<<endl;
 }
 catch (...) {
 cout << "Exception 1 occurred";
 }
 }
 if (vr==1){

 }
 if (ml==1){
 /*try {
 WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 }
 catch (...) {
 cout << "Exception 3 occurred";
 }*/
 }
 return;
 }

 // Defining the used conditions:
 Matrix qd(7,1);
 float ts, dt, ddt;
 int n, j;
 float qd2 [7]= {PI/2, PI/2, 0, PI/2, PI/2, PI/2, 0}; // Final joint angles (Ready
Position).
 for (j = 0 ; j < 7 ; j++) {
 qd(j,0)=qd2[j];
 }

www.manaraa.com

62

Appendix A. (Continued)

ts=10; // (5 or 10 or 20) Simulation time to move the arm from any position to

the ready position.
 n=100; // Number of time steps.
 dt=ts/n; // The time step to move the arm from any position to the ready
position.

 FILE * fel;
 fel = fopen("Any2ready.txt","w");
 fprintf(fel," qd is: \n\n");
 int k;
 for (j=0;j<qd.RowNo();j++){
 for (k=0;k<qd.ColNo();k++){
 fprintf(fel," %4.2f ", qd(j,k));
 }
 fprintf(fel," \n");
 }
 fprintf(fel," \n\n\n");
 fprintf(fel," ts is %4.2f ", ts);
 fprintf(fel," \n\n\n");
 fprintf(fel," n is %d ", n);
 fprintf(fel," \n\n\n");
 fprintf(fel," dt is %4.2f ", dt);
 fprintf(fel," \n\n\n");

 // Initializing the physical Arm:
 if (arm==1){
 zero.Null(10,1);
 for (j = 0 ; j < 9 ; j++) {
 zero(j,0)=qi(j,0);
 }
 cout<<"0";
 WMRA_ARM_Motion(ini, 2, zero, dt, g);
 ddt=0;
 cout<<"1"<<endl;
 }
 fprintf(fel," qi is: \n\n");
 for (j=0;j<qi.RowNo();j++){
 for (k=0;k<qi.ColNo();k++){
 fprintf(fel," %4.2f ", qi(j,k));
 }
 fprintf(fel," \n");
 }
 fprintf(fel," \n\n\n");

 if (vr==1){
 // WMRA_VR_Animation(ini, Tiwc, qi);
 }

 // Initializing Robot Animation in Matlab Graphics:
 Matrix DH(1,1);
 Matrix T01(4,4), T12(4,4), T23(4,4), T34(4,4), T45(4,4), T56(4,4), T67(4,4);
 Matrix Ti(4,4), Td(4,4);

 if (ml==1){
 // Inputting the D-H Parameters in a Matrix form:
 DH=WMRA_DH(qi);

 // Calculating the transformation matrices of each link:
 T01 =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2));
 T12 =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2));
 //T3
 T23 =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2));

www.manaraa.com

63

Appendix A. (Continued)

//T4
 T34 =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2));
 //T5
 T45 =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2));
 //T6
 T56 =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2));
 //T7
 T67 =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2));
 // Calculating the Transformation Matrix of the initial and desired arm
positions:
 Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67;
 Td=Tiwc*WMRA_q2T(qd);
 }

 // Check for the shortest route:
 Matrix diff(7,1);
 for (j=0;j<7;j++){
 diff(j,0)=qd(j,0)-qi(j,0);
 }
 for (j=0;j<7;j++){
 if (diff(j,0) > PI) {
 diff(j,0)=diff(j,0)-2*PI;
 }
 else if (diff(j,0) < (-PI)) {
 diff(j,0)=diff(j,0)+2*PI;
 }
 }

 fprintf(fel," diff is: \n\n");
 for (j=0;j<diff.RowNo();j++){
 for (k=0;k<diff.ColNo();k++){
 fprintf(fel," %4.2f ", diff(j,k));
 }
 fprintf(fel," \n");
 }
 fprintf(fel," \n\n\n");

 diff/=(n);
 Matrix dq(1,1);
 dq.Null(9,1);
 for (j = 0 ; j < 7 ; j++) {
 dq(j,0)=diff(j,0);
 }

 fprintf(fel," dq is: \n\n");
 for (j=0;j<dq.RowNo();j++){
 for (k=0;k<dq.ColNo();k++){
 fprintf(fel," %4.2f ", dq(j,k));
 }
 fprintf(fel," \n");
 }
 fprintf(fel," \n\n\n");

 // Initialization:
 Matrix qo(1,1);
 float tt;
 qo=qi;
 tt=0;
 fprintf(fel," qo is: \n\n");
 for (j=0;j<qo.RowNo();j++){
 for (k=0;k<qo.ColNo();k++){

www.manaraa.com

64

Appendix A. (Continued)

fprintf(fel," %4.2f ", qo(j,k));
 }
 fprintf(fel," \n");
 }
 fprintf(fel," \n\n\n");
 fprintf(fel," tt is %4.2f ", tt);
 fprintf(fel," \n\n\n");

 Matrix qn(1,1);
 clock_t startt, endt, endf;
 double timedif;
 Matrix T1a(1,1), T2a(1,1), T3a(1,1), T4a(1,1), T5a(1,1), T6a(1,1), T7a(1,1);

 while (tt <= (ts-dt)) {
 // Starting a timer:
 startt=0;
 startt=clock()/ CLOCKS_PER_SEC;

 // Calculating the new Joint Angles:
 qn.Null(9,1);
 qn=qo+dq;

 fprintf(fel," qn is: \n\n");
 for (j=0;j<qn.RowNo();j++){
 for (k=0;k<qn.ColNo();k++){
 fprintf(fel," %4.2f ", qn(j,k));
 }
 fprintf(fel," \n");
 }
 fprintf(fel," \n\n\n");
 fprintf(fel," ddt is %4.2f ", ddt);
 fprintf(fel," \n\n\n");

 // Updating the physical Arm:
 if (arm==1) {
 float ddt2=0;
 ddt2=ddt+dt;
 if (ddt2>=0.5 || tt>=(ts-dt)){
 zero.Null(10,1);
 for (j = 0 ; j < 9 ; j++) {
 zero(j,0)=qn(j,0);
 }
 cout<<"2";
 WMRA_ARM_Motion(2, 1, zero, ddt2, g);
 cout<<"3";
 ddt2=0;
 }
 ddt=0;
 ddt=ddt2;
 }

 // Updating Virtual Reality Animation:
 if (vr==1){
 //WMRA_VR_Animation(2, Tiwc, qn);
 }

 // Updating Matlab Animation:
 if (ml==1){
 // Calculating the new Transformation Matrix:
 T1a =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(qn(0,0))*WMRA_transl(0,0,DH(0,2));
 //T2
 T2a =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(qn(1,0))*WMRA_transl(0,0,DH(1,2));
 //T3

www.manaraa.com

65

Appendix A. (Continued)

T3a=
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(qn(2,0))*WMRA_transl(0,0,DH(2,2));
 //T4
 T4a =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(qn(3,0))*WMRA_transl(0,0,DH(3,2));
 //T5
 T5a =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(qn(4,0))*WMRA_transl(0,0,DH(4,2));
 //T6
 T6a =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(qn(5,0))*WMRA_transl(0,0,DH(5,2));
 //T7
 T7a =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(qn(6,0))*WMRA_transl(0,0,DH(6,2));

 //WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a);
 }

 // Updating the old values with the new values for the next iteration:

 qo.Null(9,1);
 qo=qn;
 tt=tt+dt;

 fprintf(fel," qo is: \n\n");
 for (j=0;j<qo.RowNo();j++){
 for (k=0;k<qo.ColNo();k++){
 fprintf(fel," %4.2f ", qo(j,k));
 }
 fprintf(fel," \n");
 }
 fprintf(fel," \n\n\n");
 fprintf(fel," tt is %4.2f ", tt);
 fprintf(fel," \n\n\n");

 // Pausing for the speed sync:
 endt=0;
 endt=clock()/ CLOCKS_PER_SEC;
 timedif=0;
 timedif=endt-startt;
 wait((dt-timedif));
 }
 fclose(fel);
}

www.manaraa.com

66

Appendix A. (Continued)

/* This function communicates with the physical USF WMRA system with 9 DOF to get the
encoder readings and send the commands to be executed.
The (.H) file and the (.DLL) file that contains the used functions should be in the
directory containing this program.
config=0: Set the current encoder readings to zeros.
config=1: Read the encoder readings from the configuration txt file.
config=2: Change the configuration file to the initial values provided by (qo), then read
the encoder readings from the configuration txt file.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%Developed by: Punya Basnayaka %%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Feb 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "WCD.h"
#include "ArmMotion.h"
#include <math.h>
#include <string>
#include <iostream>
#include <sstream>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <time.h> //if #include<windows.h> is included, there will be error messages
#include "control.h"
//#include "C:\Documents and Settings\pbasnaya\Desktop\My
Research\WMRA2all\functiontest\functiontest\controlt2.h"
#include "Galil.h"
using namespace std;
using namespace math;
using namespace System;

void sleep(long d) //sleep function takes in ms value
{ //sleep(1000) sleeps for 1 second
 clock_t start=clock();
 while(clock() - start < d);
}

Matrix WMRA_ARM_Motion(int ind, int config, Matrix qo, float dt, Galil &g){

 //extern long * ptr;
 extern float e2r1, e2r2, e2r3, e2r4, e2r5, e2r6, e2r7, e2r8, e2r9, e2d;
 long int aa, bb, cc, dd, ee, ff, gg, hh;
 //long int aa1, bb2, cc3, dd4, ee5, ff6, gg7, hh8;
 string a1, b1, c1,d1,e1,f1,g1;
 float Kp, Kd, Ki;
 Matrix qn(10,1), qntemp(10,1);
 Matrix L(1,1);

// Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:
 L=WMRA_WCD();

//The initialization of the Arm library:
 if (ind==1){

// PID controller gains:

 Brushed_Motor ('A', 1,g);

www.manaraa.com

67

Appendix A. (Continued)

e2r1=PI/6595000;//a

 e2r2=PI/5100000;//b
 e2r3=PI/1800000;//c
 e2r4=PI/2300000;//d
 e2r5=PI/2000000;//e
 e2r6=-PI/2000000;//f
 e2r7=PI/1500000; //g
 e2r8=1; // Redwan: change this to forward motion when wheelchair
controllers are installed (Only when reading the encoders).
 e2r9=1; // Redwan: change this to rotation motion when wheelchair
controllers are installed (Only when reading the encoders).
 e2d =1/100000;//h

// The case when changing the configuration file to qo is required:

 if (config==2){

// Converting the commanded angles to encoder readings:

 qo(0,0)=qo(0,0)/e2r1;
 qo(1,0)=qo(1,0)/e2r2;
 qo(2,0)=qo(2,0)/e2r3;
 qo(3,0)=qo(3,0)/e2r4;
 qo(4,0)=qo(4,0)/e2r5;
 qo(5,0)=qo(5,0)/e2r6;
 qo(6,0)=qo(6,0)/e2r7;
 qo(7,0)=qo(7,0)/e2r8;
 qo(8,0)=qo(8,0)/e2r9;
 qo(9,0)=0;

// Changing the configuration file to qo:
 FILE * fid;
 fid = fopen("configuration.txt","w");
 int j;
 for (j=0;j<7;j++){
 fprintf(fid," %10.0f ",qo(j,0));
 }
 fclose (fid);
 config=1;
 }
 g.command("KPH=2");
 g.command("KDH=30");
 g.command("KIH=0");
 g.command("KPA=35");
 g.command("KDA=260");
 g.command("KIA=0");
// This command sets the controller board in postion tracking mode

 Pos_track (g);
 Decceleration_all (90000, g);
 Time_constant (0.6, g);

 long int qp[10];

 qp[0]=qo(0,0);
 //cout<<"qp[0] = "<<qp[0]<<endl;
 qp[1]=qo(1,0);
 //cout<<"qp[1] = "<<qp[1]<<endl;
 qp[2]=qo(2,0);
 //cout<<"qp[2] = "<<qp[2]<<endl;
 qp[3]=qo(3,0);
 //cout<<"qp[3] = "<<qp[3]<<endl;
 qp[4]=qo(4,0);
 //cout<<"qp[4] = "<<qp[4]<<endl;
 qp[5]=qo(5,0);

www.manaraa.com

68

Appendix A. (Continued)

qp[6]=qo(6,0);

 //cout<<"qp[6] = "<<qp[6]<<endl;
 qp[7]=qo(7,0);
 //cout<<"qp[7] = "<<qp[7]<<endl;
 qp[8]=qo(8,0);
 //cout<<"qp[8] = "<<qp[8]<<endl;
 qp[9]=qo(9,0);
 cout<<"qp[9] = "<<qp[9]<<endl;

 Define_Position ('A', qo(0,0), g);
 Define_Position ('B', qo(1,0), g);
 Define_Position ('C', qo(2,0), g);
 Define_Position ('D', qo(3,0), g);
 Define_Position ('E', qo(4,0), g);
 Define_Position ('F', qo(5,0), g);
 Define_Position ('G', qo(6,0), g);
 Define_Position ('H', qo(9,0), g);

 //PID Gains setting

 PID_all(6,64,0,g);

 aa=Tell_pos('A', g);
 bb=Tell_pos('B', g);
 cc=Tell_pos('C', g);
 dd=Tell_pos('D', g);
 ee=Tell_pos('E', g);
 ff=Tell_pos('F', g);
 gg=Tell_pos('G', g);
 hh=Tell_pos('H', g);

 long int qc[10];

 qc[0]=aa;
 qc[1]=bb;
 qc[2]=cc;
 qc[3]=dd;
 qc[4]=ee;
 qc[5]=ff;
 qc[6]=gg;
 qc[7]=0;
 qc[8]=0;
 qc[9]=hh;

 qn(0,0)=qc[0]*e2r1;
 qn(1,0)=qc[1]*e2r2;
 qn(2,0)=qc[2]*e2r3;
 qn(3,0)=qc[3]*e2r4;
 qn(4,0)=qc[4]*e2r5;
 qn(5,0)=qc[5]*e2r6;
 qn(6,0)=qc[6]*e2r7;
 qn(7,0)=qc[7]*e2r8;
 qn(8,0)=qc[8]*e2r9;
 qn(9,0)=qc[9]*e2d;// gripper
 cout<<"qn(9,0)"<<qn(9,0)<<endl;

 }

// Closing the Arm library:

 else{
 if (ind==3){
 qn.Null(10,1);
 cout<<"qn" <<qn<<endl;
 }

www.manaraa.com

69

Appendix A. (Continued)

// Updating the Arm:
 else {

 if (ind==2){

 try
 {
 long int qin[10];

 aa=Tell_pos('A', g);
 bb=Tell_pos('B', g);
 cc=Tell_pos('C', g);
 dd=Tell_pos('D', g);
 ee=Tell_pos('E', g);
 ff=Tell_pos('F', g);
 gg=Tell_pos('G', g);
 hh=Tell_pos('H', g);

 long int qc[10];

 qc[0]=aa;
 qc[1]=bb;
 qc[2]=cc;
 qc[3]=dd;
 qc[4]=ee;
 qc[5]=ff;
 qc[6]=gg;
 qc[7]=0;
 qc[8]=0;
 qc[9]=hh;
 cout<<"qc[9] = "<<qc[9]<<endl;

 float qt[10];
 float qg[1];
 qo(0,0)=qo(0,0)/e2r1;
 qo(1,0)=qo(1,0)/e2r2;
 qo(2,0)=qo(2,0)/e2r3;
 qo(3,0)=qo(3,0)/e2r4;
 qo(4,0)=qo(4,0)/e2r5;
 qo(5,0)=qo(5,0)/e2r6;
 qo(6,0)=qo(6,0)/e2r7;
 qo(7,0)=qo(7,0)/e2r8 ;
 qo(8,0)=qo(8,0)/e2r9;

 if(qo(9,0)==0)
 {
 qo(9,0)=0;
 qo(9,0)=qo(9,0)+qc[9];

 }
 else
 {
 if(qo(9,0)==1){
 qo(9,0)=-qo(9,0)*100000 ;
 qo(9,0)=qo(9,0)+qc[9];
 }
 if (qo(9,0)==-1){
 qo(9,0)=-qo(9,0)*100000 ;
 qo(9,0)=qo(9,0)+qc[9];
 }

 }

www.manaraa.com

70

Appendix A. (Continued)

cout<<"qg[1] = "<<qo(9,0)<<endl;

 float dq[8];

 dq[0]=qo(0,0)-qc[0];
 dq[1]=qo(1,0)-qc[1];
 dq[2]=qo(2,0)-qc[2];
 dq[3]=qo(3,0)-qc[3];
 dq[4]=qo(4,0)-qc[4];
 dq[5]=qo(5,0)-qc[5];
 dq[6]=qo(6,0)-qc[6];
 dq[7]=qo(9,0)-qc[9];

 long int dq1[8];

 dq1[0]=abs(dq[0]);
 dq1[1]=abs(dq[1]);
 dq1[2]=abs(dq[2]);
 dq1[3]=abs(dq[3]);
 dq1[4]=abs(dq[4]);
 dq1[5]=abs(dq[5]);
 dq1[6]=abs(dq[6]);
 dq1[7]=abs(dq[7]);

 cout<<"dq[7] = "<<dq[7]<<endl;

 long int dq01[8];
 long int dq01t[8];
 long int qddo1[8];

 dq01t[7]=dq1[7]/2;

 qddo1[7]=5000;

 if (abs(dq[0])>25000)
 {
 dq01[0]=170000;
 qddo1[0]=75000;
 }
 else{
 dq01[0]=2*abs(dq[0])/0.3;;
 qddo1[0]=2*abs(dq[0])/0.7;

 }
 cout<<"dq01[0] = "<<dq01[0]<<endl;
 cout<<"qddo1[0]= "<<qddo1[0]<<endl;
 ///////////////

 if (abs(dq[1])>25000)
 {
 dq01[1]=170000;
 qddo1[1]=75000;
 }
 else{
 dq01[1]=2*abs(dq[1])/0.3;;
 qddo1[1]=2*abs(dq[1])/0.7;

 }
 cout<<"dq01[1] = "<<dq01[1]<<endl;
 cout<<"qddo1[1]= "<<qddo1[1]<<endl;
 ///////////////////////

www.manaraa.com

71

Appendix A. (Continued)

if (abs(dq[2])>25000)

 {
 dq01[2]=170000;
 qddo1[2]=75000;
 }
 else{
 dq01[2]=2*abs(dq[2])/0.3;;
 qddo1[2]=2*abs(dq[2])/0.7;

 }
 cout<<"dq01[2] = "<<dq01[2]<<endl;
 cout<<"qddo1[2]= "<<qddo1[2]<<endl;
 ///////////////////
 if (abs(dq[3])>25000)
 {
 dq01[3]=170000;
 qddo1[3]=75000;
 }
 else{
 dq01[3]=2*abs(dq[3])/0.3;;
 qddo1[3]=2*abs(dq[3])/0.7;

 }
 cout<<"dq01[3] = "<<dq01[3]<<endl;
 cout<<"qddo1[3]= "<<qddo1[3]<<endl;
 /////////////////////

 if (abs(dq[4])>25000)
 {
 dq01[4]=170000;
 qddo1[4]=75000;
 }
 else{
 dq01[4]=2*abs(dq[4])/0.3;;
 qddo1[4]=2*abs(dq[4])/0.7;

 }
 cout<<"dq01[4] = "<<dq01[4]<<endl;
 cout<<"qddo1[4]= "<<qddo1[4]<<endl;
 //////////////////
 if (abs(dq[5])>25000)
 {
 dq01[5]=170000;
 qddo1[5]=75000;
 }
 else{
 dq01[5]=2*abs(dq[5])/0.3;;
 qddo1[5]=2*abs(dq[5])/0.7;

 }
 cout<<"dq01[5] = "<<dq01[5]<<endl;
 cout<<"qddo1[5]= "<<qddo1[5]<<endl;
 //////////////////
 if (abs(dq[6])>25000)
 {
 dq01[6]=170000;
 qddo1[6]=75000;
 }
 else{
 dq01[6]=2*abs(dq[6])/0.3;;
 qddo1[6]=2*abs(dq[6])/0.7;

 }
 cout<<"dq01[6] = "<<dq01[6]<<endl;

www.manaraa.com

72

Appendix A. (Continued)

int j;
FILE * fid1;
fid1 = fopen("arm1.txt","a");
fprintf(fid1," \n\n\n");
 fprintf(fid1," qc[3] is %4.2f ", qc[3]);
 fprintf(fid1," \n\n\n");

 Position_control('a',qo(0,0),dq01[0],qddo1[0], g);

 Position_control('b',qo(1,0),dq01[1],qddo1[1], g);

 Position_control('c',qo(2,0),dq01[2],qddo1[2], g);

 Position_control('d',qo(3,0),dq01[3],qddo1[3], g);

 Position_control('e',qo(4,0),dq01[4],qddo1[4], g);

 Position_control('f',qo(5,0),dq01[5],qddo1[5], g);
 //Position_control('g',qo(6,0),dq01[6],qddo1[6], g);
 Position_control('h',qo(9,0),dq01t[7],5000, g);

 aa=Tell_pos('A', g);
 bb=Tell_pos('B', g);
 cc=Tell_pos('C', g);
 dd=Tell_pos('D', g);
 ee=Tell_pos('E', g);
 ff=Tell_pos('F', g);
 gg=Tell_pos('G', g);
 hh=Tell_pos('H', g);

 qc[0]=aa;
 qc[1]=bb;
 qc[2]=cc;
 qc[3]=dd;
 qc[4]=ee;
 qc[5]=ff;
 qc[6]=gg;
 qc[7]=0;
 qc[8]=0;
 qc[9]=hh;

 qn(0,0)=qc[0]*e2r1;
 qn(1,0)=qc[1]*e2r2;
 qn(2,0)=qc[2]*e2r3;
 qn(3,0)=qc[3]*e2r4;
 //cout<<"qn(3,0) = "<<qn(3,0)<<endl;
 qn(4,0)=qc[4]*e2r5;
 qn(5,0)=qc[5]*e2r6;
 qn(6,0)=qc[6]*e2r7;
 qn(7,0)=qc[7]*e2r8;
 qn(8,0)=qc[8]*e2r9;
 qn(9,0)=qc[9]*e2d;
 cout <<"qn"<<qn<<endl;
 fprintf(fid1," \n\n\n");
 fprintf(fid1," qn(3,0) is %4.2f ", qn(3,0));
 fprintf(fid1," \n\n\n");
 fclose(fid1);
 }
 catch(string e)
 {
 cout << e;

www.manaraa.com

73

Appendix A. (Continued)

}

 }
 }
 }

 return qn;
}

 }

/* This function uses a 3rd order Polynomial with a Blending factor to find a smooth
trajectory points of a variable "q" along a streight line, given the initial and final
variable values and the number of trajectory points.
The output is the variable position.
See Eq. 7.18 page 210 of Craig Book

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%Modified by: Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/
#include "matrix.h"
#include "BPolynomial.h"
using namespace std;
using namespace math;

Matrix WMRA_BPolynomial(float qi, float qf, float n){
 Matrix qtb(2,1);
 // Blending Factor:
 int b;
 b=5;
 // Initializing the time:
 float tt, tf, dt, qddb, tb, qdb, qb;
 float a01, a11, a21, a31, a41, a51, a02, a12, a22, a32, a42, a52;
 int i;
 tt=0;
 tf=abs(qf-qi);
 dt=tf/(n-1);

 if (tf > 0.001){
 // Blending procedure:
 // Time, position, velocity, and acceleration of the variable at the first
blending point:
 qddb=b*4*(qf-qi)/pow(tf,2);
 tb=tf/2-sqrt(pow(qddb,2)*pow(tf,2)-4*qddb*(qf-qi))/abs(2*qddb);
 qdb=qddb*tb;
 qb=qi+qddb*pow(tb,2)/2;
 // Calculating the polynomial factors at the first blending point: From
Eq.7.18 page 210 of Craig Book
 a01=qi;
 a11=0;
 a21=0.5*qddb;
 a31=(20*(qb-qi)-8*qdb*tb-2*qddb*pow(tb,2))/(2*pow(tb,3));
 // a41=(30*(qi-qb)+14*qdb*tb+qddb*pow(tb,2))/(2*pow(tb,4)); % Uncomment
for 5th order polynomial.
 // a51=(12*(qb-qi)-6*qdb*tb)/(2*pow(tb,5)); % Uncomment for 5th order
polynomial.
 // Calculating the polynomial factors at the second blending point: From
Eq.7.18 page 210 of Craig Book
 a02=qb+qdb*(tf-2*tb);

www.manaraa.com

74

Appendix A. (Continued)

a12=qdb;

 a22=-0.5*qddb;
 a32=(20*(qf-a02)-12*a12*tb+2*qddb*pow(tb,2))/(2*pow(tb,3));
 // a42=(30*(a02-qf)+16*a12*tb-qddb*pow(tb,2))/(2*pow(tb,4)); % Uncomment
for 5th order polynomial
 // a52=(12*(qf-a02)-6*a12*tb)/(2*pow(tb,5)); % Uncomment for 5th order
polynomial.
 }

 // Calculating the intermediate joint angles along the trajectory from the initial
to the final position:
 float *qttemp;
 qttemp = new float[n];
 for (i=0; i<n; i++){
 if (tf<=0.001){
 qttemp[i]=qi;
 }
 else if (tt<=tb){
 qttemp[i]=a01+a11*tt+a21*pow(tt,2)+a31*pow(tt,3);
//+a41*pow(tt,4)+a51*pow(tt,5); // Uncomment before "+a41" for 5th order polynomial.
 }
 else if (tt>=(tf-tb)){
 qttemp[i]=a02+a12*(tt+tb-tf)+a22*pow((tt+tb-tf),2)+a32*pow((tt+tb-
tf),3); //+a42*pow((tt+tb-tf),4)+a52*pow((tt+tb-tf),5); // Uncomment before "+42" for 5th
order polynomial.
 }
 else {
 qttemp[i]=qb-qdb*(tb-tt);
 }
 tt = tt + dt;
 }
 qtb.SetSize(n,1);
 for (i=0; i < n; i++){
 qtb(i,0) = qttemp[i];
 }
 delete [] qttemp;
 return qtb;

}

/* This function is to stop the arm if it is moving towards a collision with itself, the
wheelchair, or the human user.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%Modified By:Ana Catalina Torres%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "Collide.h"
#include "WCD.h"
using namespace std;
using namespace math;

Matrix WMRA_collide(Matrix dqi, Matrix T01, Matrix T12, Matrix T23, Matrix T34, Matrix
T45, Matrix T56, Matrix T67){

www.manaraa.com

75

Appendix A. (Continued)

Matrix L(1,1);
 L=WMRA_WCD();

 // Collision Conditions:
 int gr;
 Matrix dq(1,1);
 gr=100-L(0,3)-L(0,4); // The ground buffer surface.
 dq=dqi;

 // 1- Collision of frame 3 using T03:
 Matrix T03(1,1);
 T03=T01*T12*T23;
 // Collision with the ground:
 if (T03(2,3) <= gr){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair's front left side:
 if (T03(0,3) >= 450 && T03(1,3) <= -150){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair's rear left side:
 if (T03(0,3) <= 450 && T03(1,3) <= 100){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair's rear left wheel:
 if (T03(0,3) <= 0 && T03(1,3) <= 100 && T03(2,3) <= 120){
 dq=dqi;
 dq*=(-0.01);
 }

 // 2- Collision of frame 4 using T04:
 Matrix T04(1,1);
 T04=T03*T34;
 // Collision with the ground:
 if (T04(2,3) <= gr){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair's front left side:
 if (T04(0,3) <= 450 && T04(0,3) >= -100 && T04(1,3) <= 0){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair's rear left side:
 if (T04(0,3) <= -100 && T04(1,3) <= 100){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair's rear left wheel:
 if (T04(0,3) <= -100 && T04(1,3) <= 100 && T04(2,3) <= 120){
 dq=dqi;
 dq*=(-0.01);
 }

 // 3- Collision of frame 5 using T05:
 Matrix T05(1,1);
 T05=T04*T45;
 // Collision with the ground:
 if (T05(2,3) <= gr){
 dq=dqi;
 dq*=(-0.01);
 }

www.manaraa.com

76

Appendix A. (Continued)

if (T05(0,3) <= -100 && T05(0,3) >= -550 && T05(1,3) <= 150){

 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair driver's lap:
 if (T05(0,3) <= 400 && T05(0,3) >= -100 && T05(1,3) <= 0 && T05(2,3) <= 470){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair's battery pack:
 if (T05(0,3) <= -430 && T05(0,3) >= -630 && T05(1,3) <= 100 && T05(2,3) <= 50){
 dq=dqi;
 dq*=(-0.01);
 }

 // 4- Collision of frame 7 using T07:
 Matrix T07(1,1);
 T07=T05*T56*T67;
 // Collision with the ground:
 if (T07(2,3) <= gr){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair driver's left shoulder:
 if (T07(0,3) <= -50 && T07(0,3) >= -600 && T07(1,3) <= 200){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair driver's lap:
 if (T07(0,3) <= 450 && T07(0,3) >= -50 && T07(1,3) <= 50 && T07(2,3) <= 520){
 dq=dqi;
 dq*=(-0.01);
 }
 // Collision with the wheelchair's battery pack:
 if (T07(0,3) <= -480 && T07(0,3) >= -680 && T07(1,3) <= 50 && T07(2,3) <= 100){
 dq=dqi;
 dq*=(-0.01);
 }

 // 5- Collision of the arm and itself using T37:
 Matrix T37(1,1);
 T37=T34*T45*T56*T67;
 // Collision between the forearm and the upper arm:
 if (T37(0,3) <= 170 && T37(0,3) >= -170 && T37(1,3) >= -100 && T37(2,3) <= 0){
 dq=dqi;
 dq*=(-0.01);
 }
 return dq;

}

/* This function gives the WMRA's errors from the current position to the required
trajectory position.
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%Modified By:Ana Catalina Torres%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "Delta.h"
using namespace std;
using namespace math;

www.manaraa.com

77

Appendix A. (Continued)

Matrix WMRA_delta(Matrix Tid, Matrix Tdd){

 Matrix delta(6,1), ep(3,1), eo(3,1);
 int i,j;
 for (i=0; i < 3; i++){
 ep(i,0) = Tdd(i,3)-Tid(i,3);
 }

 vector temp3 (0, 0, 0);
 for (j=0; j<3; j++){
 vector temp1 (Tid(0,j), Tid(1,j), Tid(2,j));
 vector temp2 (Tdd(0,j), Tdd(1,j), Tdd(2,j));
 vector crossed = crossProduct (temp1, temp2);
 temp3.x=temp3.x+crossed.x;
 temp3.y=temp3.y+crossed.y;
 temp3.z=temp3.z+crossed.z;
 }
 eo(0,0)=temp3.x;
 eo(1,0)=temp3.y;
 eo(2,0)=temp3.z;
 eo*=(0.5);

 // delta definition
 for (i=0;i<3;i++){
 delta(i,0)=ep(i,0);
 }
 for (i=3;i<6;i++){
 delta(i,0)=eo(i-3,0);
 }

/*eo=0.5*(cross(Ti(1:3,1),Td(1:3,1)) + cross(Ti(1:3,2),Td(1:3,2)) +
cross(Ti(1:3,3),Td(1:3,3)));
From equation 17 on page 189 of (Robot Motion Planning and Control) Book by Micheal Brady
et al. Taken from the paper (Resolved-Acceleration Control of Mechanical Manipulators) By
John Y. S. Luh et al.*/
 return delta;

}

/* This function gives the DH-Parameters matrix to be used in the program.
Modifying the parameters on this file is sufficient to change these dimention in all
related programs.
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%Modified By:Ana Catalina Torres%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "DH.h"

using namespace math;
using namespace std;

Matrix WMRA_DH(Matrix q){

 Matrix DH1(7,4);

www.manaraa.com

78

Appendix A. (Continued)

//Inputting the D-H Parameters in a Matrix form, dimensions are in millimeters and
radians:

// Dimentions based on the actual physical arm:
 float DHtemp[7][4]={{-PI/2, 0, 102, q(0,0)},
 { PI/2, 0, 133, q(1,0)},
 {-PI/2, 0, 502, q(2,0)},
 { PI/2, 0, 90, q(3,0)},
 {-PI/2, 0, 375, q(4,0)},
 { PI/2, 0, 0, q(5,0)},
 {-PI/2, 0, 161+143, q(6,0)}};

// Dimentions based on the Virtual Reality arm model:
/* float DH[7][4]={{-PI/2, 0, 109.72, q(0,0)},
 { PI/2, 0, 118.66, q(1,0)},
 {-PI/2, 0, 499.67, q(2,0)},
 { PI/2, 0, 121.78, q(3,0)},
 {-PI/2, 0, 235.67, q(4,0)},
 { PI/2, 0, 0, q(5,0)},
 {-PI/2, 0, 276.68, q(6,0)}};
*/
 int i,j;
 for (j=0; j < 4; j++){
 for (i=0; i < 7; i++){
 DH1(i,j) = DHtemp[i][j];
 }
 }
 return DH1;
}

/* This function gives the Jacobian Matrix and its determinant based on frame
0 of the new USF WMRA, given the Transformation Matrices of each link.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%Modified By:Ana Catalina Torres%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "J07.h"

using namespace std;
using namespace math;

void WMRA_J07(Matrix T1, Matrix T2, Matrix T3, Matrix T4, Matrix T5, Matrix T6, Matrix
T7, Matrix& J0, float& detJ0){
 Matrix T(4,4), J0temp(6,6), J0trans(7,6);
 T.Unit(4);
 J0.SetSize(6,7);
 J0(0,6) = -T(0,0)*T(1,3)+T(1,0)*T(0,3);
 J0(1,6) = -T(0,1)*T(1,3)+T(1,1)*T(0,3);
 J0(2,6) = -T(0,2)*T(1,3)+T(1,2)*T(0,3);
 J0(3,6) = T(2,0);
 J0(4,6) = T(2,1);
 J0(5,6) = T(2,2);

 T = T7 * T;
// cout << "\nT is:\n" << T << endl;

www.manaraa.com

79

Appendix A. (Continued)

J0(0,5) = -T(0,0)*T(1,3)+T(1,0)*T(0,3);

 J0(1,5) = -T(0,1)*T(1,3)+T(1,1)*T(0,3);
 J0(2,5) = -T(0,2)*T(1,3)+T(1,2)*T(0,3);
 J0(3,5) = T(2,0);
 J0(4,5) = T(2,1);
 J0(5,5) = T(2,2);

 T = T6 * T;
// cout << "\nT is:\n" << T << endl;

 J0(0,4) = -T(0,0)*T(1,3)+T(1,0)*T(0,3);
 J0(1,4) = -T(0,1)*T(1,3)+T(1,1)*T(0,3);
 J0(2,4) = -T(0,2)*T(1,3)+T(1,2)*T(0,3);
 J0(3,4) = T(2,0);
 J0(4,4) = T(2,1);
 J0(5,4) = T(2,2);

 T = T5 * T;
// cout << "\nT is:\n" << T << endl;

 J0(0,3) = -T(0,0)*T(1,3)+T(1,0)*T(0,3);
 J0(1,3) = -T(0,1)*T(1,3)+T(1,1)*T(0,3);
 J0(2,3) = -T(0,2)*T(1,3)+T(1,2)*T(0,3);
 J0(3,3) = T(2,0);
 J0(4,3) = T(2,1);
 J0(5,3) = T(2,2);

 T = T4 * T;
// cout << "\nT is:\n" << T << endl;

 J0(0,2) = -T(0,0)*T(1,3)+T(1,0)*T(0,3);
 J0(1,2) = -T(0,1)*T(1,3)+T(1,1)*T(0,3);
 J0(2,2) = -T(0,2)*T(1,3)+T(1,2)*T(0,3);
 J0(3,2) = T(2,0);
 J0(4,2) = T(2,1);
 J0(5,2) = T(2,2);

 T = T3 * T;
// cout << "\nT is:\n" << T << endl;

 J0(0,1) = -T(0,0)*T(1,3)+T(1,0)*T(0,3);
 J0(1,1) = -T(0,1)*T(1,3)+T(1,1)*T(0,3);
 J0(2,1) = -T(0,2)*T(1,3)+T(1,2)*T(0,3);
 J0(3,1) = T(2,0);
 J0(4,1) = T(2,1);
 J0(5,1) = T(2,2);

 T = T2 * T;
// cout << "\nT is:\n" << T << endl;
 J0(0,0) = -T(0,0)*T(1,3)+T(1,0)*T(0,3);
 J0(1,0) = -T(0,1)*T(1,3)+T(1,1)*T(0,3);
 J0(2,0) = -T(0,2)*T(1,3)+T(1,2)*T(0,3);
 J0(3,0) = T(2,0);
 J0(4,0) = T(2,1);
 J0(5,0) = T(2,2);

 T = T1 * T;
// cout << "\nT is:\n" << T << endl;
 J0temp.Null(6,6);
 int i, j;
 for (i=0 ; i < 3 ; i++) {
 for (j = 0 ; j < 3 ; j++) {
 J0temp(i,j)=T(i,j);
 }

www.manaraa.com

80

Appendix A. (Continued)

}
 for (i=3 ; i < 6 ; i++) {
 for (j = 3 ; j < 6 ; j++) {
 J0temp(i,j)=T(i-3,j-3);
 }
 }

 J0 = J0temp * J0;
 J0trans = ~J0;
 J0temp = J0 * J0trans;
 detJ0= sqrt(J0temp.Det());
}

/* This function gives the WMRA's base Jacobian Matrix based on the ground frame, given
the Wheelchair orientation angle about the z axis.
Dimentions are as supplies, angles are in radians.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "WCD.h"
#include "matrix.h"
#include "Jga.h"
using namespace std;
using namespace math;

Matrix WMRA_Jga(int ind, float p, float X, float Y){

 Matrix Jga(6,2);
 Matrix L(1,1);
 // Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:
 L=WMRA_WCD();
 int i;
 // Deciding if the motion is in reference to the arm base (1) or the wheel axle
center (0):
 if (ind==0){
 for (i=1; i<4;i++){
 L(0,i)=0;
 }
 }

 // Calculating the Jacobian:
 Matrix Jtemp1(6,6),Jtemp2(6,2),Jtemp3(2,2);
 Jtemp1.Unit(6);
 Jtemp1(0,5)=-(X*sin(p)+Y*cos(p));
 Jtemp1(1,5)=X*cos(p)-Y*sin(p);
 Jtemp2.Null(6,2);
 Jtemp2(0,0)=cos(p)+2*(L(0,1)*sin(p)+L(0,2)*cos(p))/L(0,0);
 Jtemp2(0,1)=cos(p)-2*(L(0,1)*sin(p)+L(0,2)*cos(p))/L(0,0);
 Jtemp2(1,0)=sin(p)-2*(L(0,1)*cos(p)-L(0,2)*sin(p))/L(0,0);
 Jtemp2(1,1)=sin(p)+2*(L(0,1)*cos(p)-L(0,2)*sin(p))/L(0,0);
 Jtemp2(5,0)=-2/L(0,0);
 Jtemp2(5,1)=2/L(0,0);
 Jtemp2*=(L(0,4)/2);

www.manaraa.com

81

Appendix A. (Continued)

Jtemp3(0,0)=1;

 Jtemp3(0,1)=-L(0,0)/(2*L(0,4));
 Jtemp3(1,0)=1;
 Jtemp3(1,1)=L(0,0)/(2*L(0,4));

 Jga = Jtemp1 * Jtemp2 * Jtemp3;
 return Jga;

}

/* This function gives the joint limit vector to be used in the program.
Modifying the parameters on this file is sufficient to change these limits in all related
programs.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "Jlimit.h"
using namespace std;
using namespace math;

void WMRA_Jlimit(Matrix& qmin, Matrix& qmax){

 float qmintemp[7]= {-170*PI/180,-170*PI/180,-170*PI/180,-170*PI/180,-170*PI/180,-
79*PI/180,-200*PI/180};
 float qmaxtemp[7] =
{170*PI/180,170*PI/180,170*PI/180,170*PI/180,170*PI/180,79*PI/180,200*PI/180};
 int i;
 for (i=0; i < 7; i++){
 qmin(0,i) = qmintemp[i];
 qmax(0,i) = qmaxtemp[i];
 }

}

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
Function Declaration:*/

#include "matrix.h"
#include "Linear.h"
using namespace std;
using namespace math;

Matrix WMRA_Linear(float qi, float qf, float n){
 Matrix qt(2,1);
 int i;
 float dq;
 dq =(qf-qi)/(n-1);

 float *qttemp;

www.manaraa.com

82

Appendix A. (Continued)

qttemp = new float[n];

 for (i=1; i<n+1; i++){
 qttemp[i-1]=qi+dq*(i-1);
 }

 qt.SetSize(n,1);
 for (i=0; i < n; i++){
 qt(i,0) = qttemp[i];
 }
 delete [] qttemp;

 return qt;
}

/* This "new USF WMRA" script SIMULATES the WMRA system with ANIMATION and plots for 9
DOF. All angles are in Radians.
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres & Punya A.Basnayaka%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%*/

#include "matrix.h"
#include "var_included.h"
#include "any2ready.h"
#include "ArmMotion.h"
#include "BPolynomial.h"
#include "Collide.h"
#include "Delta.h"
#include "DH.h"
#include "J07.h"
#include "Jga.h"
#include "Jlimit.h"
#include "Linear.h"
#include "Opt.h"
#include "p2T.h"
#include "plots2.h"
#include "park2ready.h"
#include "Polynomial.h"
#include "q2T.h"
#include "ready2any.h"
#include "ready2park.h"
#include "Rotx.h"
#include "Roty.h"
#include "Rotz.h"
#include "sign.h"
#include "T2rpy.h"
#include "Tall.h"
#include "Traj.h"
#include "Transl.h"
#include "w2T.h"
#include "WCD.h"
#include <math.h>
#include <time.h>
#include <iostream>
#include <fstream>
#include <tchar.h>
#include <string.h>

using namespace std;
using namespace math;
using namespace System;
using namespace System::Windows::Forms;

www.manaraa.com

83

Appendix A. (Continued)

using namespace System::Drawing;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Data;
#define PI 3.14159265
#define d2r PI/180 //Conversions from Degrees to Radians.
#define r2d 180/PI //Conversions from Radians to Degrees.
// Creating an intnce of object to be used in all the programs
static Galil g("COM4 19200");
int main(){
 Matrix L(1,1);
 // Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:
 L=WMRA_WCD();
 exitvar=0;
 // User input prompts:
 int choice000, choice00000, choice0000, choice5, choice50, choice500, choice0,
choice00, choice1, choice10, choice2, choice3, choice4, choice6, choice7, choice8;
 int WCA, coord, cart, optim, JLA, JLO, cont, trajf, vr, ml, arm, ini, plt;
 int j, k;
 int i;
 int port1, ts;
 float v;
 Matrix Td(4,4), Vd(3,1), qi(7,1), WCi(3,1);

topchoice:;
 cout << "\n Choose what to control: \n For combined Wheelchair and Arm control,
press '1',\n For Arm only control, press '2',\n For Wheelchair only control, press
'3'. \n\n ";
 cin >> choice000;
 if (choice000==2){
 WCA=2;
top1:;
 cout << "\n Choose whose frame to base the control on: \n For Ground
Frame, press '1', \n For Wheelchair Frame, press '2', \n For Gripper Frame, press
'3'. \n\n ";
 cin >> choice00000;
 if (choice00000==2){
 coord=2;
 }
 else if (choice00000==3){
 coord=3;
 }
 else if (choice00000==1){
 coord=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top1;
 }
top2:;
 cout << "\n Choose the cartesian coordinates to be controlled: \n For
Position and Orientation, press '1', \n For Position only, press '2'. \n\n ";
 cin >> choice0000;
 if (choice0000==2){
 cart=2;
 }
 else if (choice0000==1) {
 cart=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top2;
 }
top3:;

www.manaraa.com

84

Appendix A. (Continued)

cout << "\n Please enter the desired optimization method: (1= SR-I & WLN, 2= P-I & WLN,
3= SR-I & ENE, 4= P-I & ENE) \n\n ";
 cin >> choice5;
 if (choice5==2){
 optim=2;
 }
 else if (choice5==3){
 optim=3;
 }
 else if (choice5==4){
 optim=4;
 }
 else if (choice5==1){
 optim=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top3;
 }
top4:;
 cout << "\n Do you want to include Joint Limit Avoidance? (1= Yes, 2= No)
\n\n ";
 cin >> choice50;
 if (choice50==2){
 JLA=0;
 }
 else if (choice50==1){
 JLA=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top4;
 }
top5:;
 cout << "\n Do you want to include Joint Limit/Velocity and Obstacle
Safety Stop? (1= Yes, 2= No) \n\n ";
 cin >> choice500;
 if (choice500==2){
 JLO=0;
 }
 else if (choice500==1){
 JLO=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top5;
 }
 }
 else if (choice000==3){
 WCA=3;
top6:;
 cout << "\n Choose whose frame to base the control on: \n For Ground
Frame, press '1', \n For Wheelchair Frame, press '2'. \n\n ";
 cin >> choice00000;
 if (choice00000==2){
 coord=2;
 }
 else if (choice00000==1){
 coord=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top6;
 }
top7:;

www.manaraa.com

85

Appendix A. (Continued)

cout << "\n Do you want to include Joint Limit/Velocity and Obstacle Safety Stop? (1=
Yes, 2= No) \n\n ";

cin >> choice500;
 if (choice500==2){
 JLO=0;
 }
 else if (choice500==1){
 JLO=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top7;
 }

 cart=2;
 optim=0;
 JLA=0;
 }
 else if (choice000==1) {
 WCA=1;
top8:;
 cout << "\n Choose whose frame to base the control on: \n For Ground
Frame, press '1', \n For Wheelchair Frame, press '2', \n For Gripper Frame, press
'3'. \n\n ";
 cin >> choice00000;
 if (choice00000==2){
 coord=2;
 }
 else if (choice00000==3){
 coord=3;
 }
 else if (choice00000==1){
 coord=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top8;
 }
top9:;
 cout << "\n Choose the cartesian coordinates to be controlled: \n For
Position and Orientation, press '1', \n For Position only, press '2'. \n\n ";
 cin >> choice0000;
 if (choice0000==2){
 cart=2;
 }
 else if (choice0000==1){
 cart=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top9;
 }
top10:;
 cout << "\n Please enter the desired optimization method: (1= SR-I & WLN,
2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n\n ";
 cin >> choice5;
 if (choice5==2){
 optim=2;
 }
 else if (choice5==3){
 optim=3;
 }
 else if (choice5==4){
 optim=4;

www.manaraa.com

86

Appendix A. (Continued)

}
 else if (choice5==1){
 optim=1;
 }
 else {

cout << "\n Invalid choice. Try again. \n\n ";
 goto top10;
 }
top11:;
 cout << "\n Do you want to include Joint Limit Avoidance? (1= Yes, 2= No)
\n\n ";
 cin >> choice50;
 if (choice50==2){
 JLA=0;
 }
 else if (choice50==1){
 JLA=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top11;
 }
top12:;
 cout << "\n Do you want to include Joint Limit/Velocity and Obstacle
Safety Stop? (1= Yes, 2= No) \n\n ";
 cin >> choice500;
 if (choice500==2){
 JLO=0;
 }
 else if (choice500==1){
 JLO=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top12;
 }
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto topchoice;
 }
topchoice2:;
 cout << "\n Choose the control mode: \n For position control, press '1', \n For
velocity control, press '2', \n For SpaceBall control, press '3', \n For Psychology Mask
control, press '4', \n For Touch Screen control, press '5'. \n\n ";
 cin >> choice0;
 if (choice0==1){
 cont=1;
 printf ("\n Please enter the transformation matrix of the desired position
and orientation from the control-based frame \n (e.g. [0 0 1 1455;-1 0 0 369;0 -1 0 999;
0 0 0 1])\n\n");
 cin >> Td;
 cout << "\n Please enter the desired linear velocity of the gripper in
mm/s (e.g. 50) \n\n ";
 cin >> v;
top13:;
 cout << "\n Chose the Trajectory generation function: \n Press '1' for a
Polynomial function with Blending, or \n press '2' for a Polynomial function without
Blending, or \n press '3' for a Linear function. \n\n ";
 cin >> choice00;
 if (choice00==2) {
 trajf=2;
 }
 else if (choice00==3){

www.manaraa.com

87

Appendix A. (Continued)

trajf=3;
 }
 else if (choice00==1){
 trajf=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";

goto top13;
 }
 }
 else if (choice0==2){
 cont=2;
 cout << "\n Please enter the desired simulation time in seconds (e.g. 2)
\n\n ";
 cin >> ts;
 if (cart==2){
 cout << "\n Please enter the desired 3x1 cartesian velocity vector
of the gripper (in mm/s) (e.g. [70;70;-70]) \n\n ";
 cin >> Vd;
 }
 else {
 cout << "\n Please enter the desired 6x1 cartesian velocity vector
of the gripper (in mm/s, radians/s) (e.g. [70;70;-70;0.001;0.001;0.001]) \n\n ";
 Vd.SetSize(6,1);
 cin >> Vd;
 }
 }
 else if (choice0==3){
 cont=3;
 //Space Ball will be used for control.
 cout << "\n Please enter the desired linear velocity of the gripper in
mm/s (e.g. 50) \n\n ";
 cin >> v;
 }
 else if (choice0==4){
 cont=4;
 //BCI 2000 Psychology Mask will be used for control.
 cout << "\n Please enter the desired linear velocity of the gripper in
mm/s (e.g. 50) \n\n ";
 cin >> v;
 cout << "\n Please enter the desired port number (e.g. 19711) \n\n ";
 cin >> port1;
 }
 else if (choice0==5){
 cont=5;
 //Touch Screen will be used for control.
 cout << "\n Please enter the desired linear velocity of the gripper in
mm/s (e.g. 50) \n\n ";
 cin >> v;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto topchoice2;
 }

topchoice3:;
 cout << "\n Choose animation type or no animation: \n For Virtual Reality
Animation, press '1', \n For Matlab Graphics Animation, press '2', \n For BOTH
Animations, press '3', \n For NO Animation, press '4'. \n\n ";
 cin >> choice1;
 if (choice1==2) {
 vr=0; ml=1;
 }
 else if (choice1==3){

www.manaraa.com

88

Appendix A. (Continued)

vr=1; ml=1;
 }
 else if (choice1==4){
 vr=0; ml=0;
 }
 else if (choice1==1){
 vr=1; ml=0;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
goto topchoice3;
 }

topchoice4:;
 cout << "\n Would you like to run the actual WMRA? \n For yes, press '1', \n For
no, press '2'.\n\n ";
 cin >> choice10;
 if (choice10==1) {
 arm=1;
 }
 else if (choice10==2){
 arm=0;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto topchoice4;
 }

topchoice5:;
 cout <<"\n Press '1' if you want to start at the 'ready' position, \n or press '2'
if you want to enter the initial joint angles. \n\n ";
 cin >> choice2;
 if (choice2==2) {
 cout <<"\n Please enter the arms initial angles vector in radians (e.g.
[PI/2;PI/2;0;PI/2;PI/2;PI/2;0])\n\n ";
 cin >> qi;
 cout <<"\n Please enter the initial x,y position and z orientation of the
WMRA base from the ground base in millimeters and radians (e.g. [200;500;0.3])\n\n ";
 cin >> WCi;
 ini = 0;
 }
 else if (choice2==1){
 float qi2 [7]= {90, 90, 0, 90, 90, 90, 0};
 for (j = 0 ; j < 7 ; j++) {
 qi(j,0)=qi2[j]*d2r;
 }
 WCi.Null(3,1);
 if (vr==1 || ml==1 || arm==1) {
top14:;
 cout <<"\n Press '1' if you want to include 'park' to 'ready'
motion, \n or press '2' if not.\n\n ";
 cin >> choice3;
 if (choice3==2){
 ini = 0;
 }
 else if (choice3==1){
 ini = 1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto top14;
 }
 }
 }
 else {

www.manaraa.com

89

Appendix A. (Continued)

cout << "\n Invalid choice. Try again. \n\n ";
 goto topchoice5;
 }

topchoice6:;
 cout <<"\n Press '1' if you do NOT want to plot the simulation results, \n or
press '2' if do.\n\n ";
 cin >> choice4;
 if (choice4==2) {
 plt=2;
 }
 else if (choice4==1) {

plt=1;
 }
 else {
 cout << "\n Invalid choice. Try again. \n\n ";
 goto topchoice6;
 }

 // Calculating the Transformation Matrix of the initial position of the WMRA's
base:
 Matrix Tiwc(4,4), qiwc(2,1);
 Tiwc = WMRA_p2T(WCi(0,0),WCi(1,0),WCi(2,0));
 //cout<<"Tiwc\n"<<Tiwc<<"\n\n";
 //Calculating the initial Wheelchair Variables:
 qiwc(0,0)=sqrt(pow(WCi(0,0),2)+pow(WCi(1,0),2));
 qiwc(1,0)=WCi(2,0);
 //cout<<"qiwc\n"<<qiwc<<"\n\n";

 //Calculating the initial transformation matrices:
 Matrix dq(1,1), Ti(4,4), Tia(4,4), Tiwco(4,4), T01(4,4), T12(4,4), T23(4,4),
T34(4,4), T45(4,4), T56(4,4), T67(4,4), Unit(1,1);
 Unit.Null(2,1);
 WMRA_Tall(1, qi, Unit, Tiwc, Ti, Tia, Tiwco, T01, T12, T23, T34, T45, T56, T67);

 FILE * fid;
 fid = fopen("main.txt","w");
 fprintf(fid," Tiwc is: \n\n");
 for (j=0;j<Tiwc.RowNo();j++){
 for (k=0;k<Tiwc.ColNo();k++){
 fprintf(fid," %4.2f ", Tiwc(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");

 Tiwc=Tiwco;

 fprintf(fid," qiwc is: \n\n");
 for (j=0;j<qiwc.RowNo();j++){
 fprintf(fid," %4.2f ", qiwc(j,0));
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Ti is: \n\n");
 for (j=0;j<Ti.RowNo();j++){
 for (k=0;k<Ti.ColNo();k++){
 fprintf(fid," %4.2f ", Ti(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Tia is: \n\n");
 for (j=0;j<Tia.RowNo();j++){
 for (k=0;k<Tia.ColNo();k++){

www.manaraa.com

90

Appendix A. (Continued)

fprintf(fid," %4.2f ", Tia(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Tiwc is: \n\n");
 for (j=0;j<Tiwc.RowNo();j++){
 for (k=0;k<Tiwc.ColNo();k++){
 fprintf(fid," %4.2f ", Tiwc(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," T01 is: \n\n");
 for (j=0;j<T01.RowNo();j++){
 for (k=0;k<T01.ColNo();k++){
 fprintf(fid," %4.2f ", T01(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," T12 is: \n\n");
 for (j=0;j<T12.RowNo();j++){
 for (k=0;k<T12.ColNo();k++){
 fprintf(fid," %4.2f ", T12(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," T23 is: \n\n");
 for (j=0;j<T23.RowNo();j++){
 for (k=0;k<T23.ColNo();k++){
 fprintf(fid," %4.2f ", T23(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," T34 is: \n\n");
 for (j=0;j<T34.RowNo();j++){
 for (k=0;k<T34.ColNo();k++){
 fprintf(fid," %4.2f ", T34(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," T45 is: \n\n");
 for (j=0;j<T45.RowNo();j++){
 for (k=0;k<T45.ColNo();k++){
 fprintf(fid," %4.2f ", T45(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," T56 is: \n\n");
 for (j=0;j<T56.RowNo();j++){
 for (k=0;k<T56.ColNo();k++){
 fprintf(fid," %4.2f ", T56(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," T67 is: \n\n");
 for (j=0;j<T67.RowNo();j++){
 for (k=0;k<T67.ColNo();k++){
 fprintf(fid," %4.2f ", T67(j,k));

www.manaraa.com

91

Appendix A. (Continued)

}
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");

 float D, dt, total_time, n, dg;
 Matrix dx(1,1);
 float ***Tt;
 if (cont==1){
 //Calculating the linear distance from the initial position to the desired
position and the linear velocity:
 if (coord==2){
 D=sqrt(pow(Td(0,3)-Tia(0,3),2) + pow(Td(1,3)-Tia(1,3),2) +
pow(Td(2,3)-Tia(2,3),2));
 fprintf(fid," D is: %g \n\n", D);
 fprintf(fid," \n\n\n");
 }

else if (coord==3){
 D=sqrt(pow(Td(0,3),2) + pow(Td(1,3),2) + pow(Td(2,3),2));
 fprintf(fid," D is: %g \n\n", D);
 fprintf(fid," \n\n\n");
 }
 else {
 D=sqrt(pow(Td(0,3)-Ti(0,3),2) + pow(Td(1,3)-Ti(1,3),2) +
pow(Td(2,3)-Ti(2,3),2));
 fprintf(fid," D is: %g \n\n", D);
 fprintf(fid," \n\n\n");
 }
 //Calculating the number of iteration and the time increment (delta t) if
the linear step increment of the tip is 1 mm:
 dt=0.05; // Time increment in seconds.
 total_time=D/v; // Total time of animation.
 n=Math::Round(total_time/dt); // Number of iterations rounded up.
 dt=total_time/n; // Adjusted time increment in seconds.
 fprintf(fid," Total time is: %4.2f \n\n", total_time);
 fprintf(fid," n is: %g \n\n", n);
 fprintf(fid," dt is: %g \n\n", dt);
 fprintf(fid," \n\n\n");

 // Calculating the Trajectory of the end effector, and once the trajectory
is calculated, we should redefine "Td" based on the ground frame:
 FILE * fid2;
 fid2 = fopen("traj.txt","w");
 if (coord==2){
 Tt=WMRA_traj(trajf,Tia,Td,n+1);
 Td=Tiwc*Td;
 }
 else if (coord==3){
 Unit.Unit(4);
 Tt=WMRA_traj(trajf,Unit,Td,n+1);
 Td=Ti*Td;
 }
 else {
 Tt=WMRA_traj(trajf,Ti,Td,n+1);
 }
 fprintf(fid2," Trajectory is \n\n");
 for (i=0;i<n+1;i++){
 for (j=0;j<4;j++){
 for (k=0;k<4;k++){
 fprintf(fid2," %4.2f ", Tt[i][j][k]);
 }
 fprintf(fid2," \n");
 }
 fprintf(fid2," \n\n\n");

www.manaraa.com

92

Appendix A. (Continued)

}
 fprintf(fid2," \n\n\n");
 fclose (fid2);
 }
 else if (cont==2){
 // Calculating the number of iterations and the time increment (delta t)
if the linear step increment of the gripper is 1 mm:
 dt=0.05; // Time increment in seconds.
 total_time=ts; // Total time of animation.
 n=Math::Round(total_time/dt); // Number of iterations rounded up.
 dt=total_time/n; // Adjusted time increment in seconds.
 dx=Vd;
 dx*=(dt);
 Td=Ti;
 fprintf(fid," Total time is: %4.2f \n\n", total_time);
 fprintf(fid," n is: %d \n\n", n);
 fprintf(fid," dt is: %g \n\n", dt);
 fprintf(fid," \n\n\n");
 fprintf(fid," dx is: \n\n");
 for (j=0;j<dx.RowNo();j++){
 fprintf(fid," %4.2f ", dx(j,0));
 }
 }
 else if (cont==3){
 //WMRA_exit(); // This is to stop the simulation in SpaceBall control when
the user presses the exit key.

 FILE * fus;
 fus = fopen("output.txt","w");
 fprintf(fus,"0\t0\t0\t0\t0\t0\t\n");
 fclose(fus);
 n=1;
 }
 else if (cont==4){

myForm2.ShowDialog() == System::Windows::Forms::DialogResult::OK;
 }
 else {
 //WMRA_screen('0'); // This is to start the screen controls. Argument:
'0'=BACK button disabled, '1'=BACK button enabled.
 dt=0.05;

 n=1;
 }

 // Initializing the joint angles, the Transformation Matrix, and time:
 Matrix qo(9,1), To(4,4), Towc(4,4), Toa(4,4), Jo(1,1);
 float tt, ddt;
 dq.Null(9,1);
 dg=0;
 for (j=0; j<7; j++){
 qo(j,0)=qi(j,0);
 }
 for (j=7; j<9; j++){
 qo(j,0)=qiwc(j-7,0);
 }

 To=Ti;
 Toa=Tia;
 Towc=Tiwc;
 tt=0;
 i=0;
 dHo.Null(7,1);

www.manaraa.com

93

Appendix A. (Continued)

fprintf(fid," dq is: \n\n");
 for (j=0;j<dq.RowNo();j++){
 fprintf(fid," %4.2f ", dq(j,0));
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," qo is: \n\n");
 for (j=0;j<qo.RowNo();j++){
 fprintf(fid," %4.2f ", qo(j,0));
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," To is: \n\n");
 for (j=0;j<To.RowNo();j++){
 for (k=0;k<To.ColNo();k++){
 fprintf(fid," %4.2f ", To(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Toa is: \n\n");
 for (j=0;j<Toa.RowNo();j++){
 for (k=0;k<Toa.ColNo();k++){
 fprintf(fid," %4.2f ", Toa(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Towc is: \n\n");
 for (j=0;j<Towc.RowNo();j++){
 for (k=0;k<Towc.ColNo();k++){
 fprintf(fid," %4.2f ", Towc(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");

 // Initializing the WMRA:
 if (ini==0){ // When no "park" to "ready" motion required.
 if (vr==1){
 //WMRA_VR_Animation(1, Towc, qo);
 }
 // Initializing Robot Animation in Matlab Graphics:
 if (ml==1){
 //WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45, T56,
T67);
 }
 if (arm==1){
 Matrix qotemp(1,1);
 qotemp.Null(10,1);
 for (j=0; j<9; j++){
 qotemp(j,0)=qo(j,0);
 }
 qotemp(9,0)=1;
 WMRA_ARM_Motion(1, 2, qotemp, 0, g);
 ddt=0;
 }
 }
 else if (ini==1 && (vr==1 || ml==1 || arm==1)){ // When "park" to "ready"
motion is required.
 Matrix qotemp(2,1);
 qotemp(0,0)=qo(7,0);
 qotemp(1,0)=qo(8,0);
 WMRA_park2ready(1, vr, ml, arm, Towc, qotemp, g);
 if (arm==1){
 ddt=0;
 }

www.manaraa.com

94

Appendix A. (Continued)

}
 wait(1);

 // Re-Drawing the Animation:
 Matrix Joa(6,7), Jowc(1,1), Jowctemp(1,1), Joatemp(1,1);
 float detJoa, detJo, phi;
 if (vr==1 || ml==1){
 //drawnow;
 }
 // Starting a timer:
 clock_t startt, start2, endt, endf, endtt;
 //time_t startt, endt, endf;
 //time(&startt);
 start2=clock()/ CLOCKS_PER_SEC;
 startt=clock()*CLK_TCK/1000;
 cout<<"\nStart is "<<startt<<"\n\n";
 double timedif;
 /*Stopwatch ^ timePerParse;
 timePerParse = Stopwatch::StartNew();
 // Stopwatch::StartNew();*/

 /* float ***Ttnew;
 Ttnew = new float**[n];
 for (j = 0; j < n; ++j) {
 Ttnew[j] = new float*[4];
 for (k = 0; k < 4; ++k){
 Ttnew[j][k] = new float[4];
 }
 }*/

 Matrix qn(1,1), Tn(4,4), Tna(4,4), Tnwc(4,4);
 Matrix q1(1,1), T1(4,4), Ta1(4,4), Twc1(4,4);
 Matrix dq1(1,1);

 // Starting the Iteration Loop:
 //for (i=0;i<n;i++){
 int flagspace=0;
 Matrix space(6,1);
 while (i<=n){
 if (i==0){
 q1=qo;
 T1=To;
 Ta1=Toa;
 Twc1=Towc;
 }
 else{
 q1=qn;
 T1=Tn;
 Ta1=Tna;
 Twc1=Tnwc;
 dq=dq1;
 }

 // Calculating the 6X7 Jacobian of the arm in frame 0:
 WMRA_J07(T01, T12, T23, T34, T45, T56, T67, Joa, detJoa);
 fprintf(fid," i is: %d\n\n",i);
 fprintf(fid," Joa is: \n\n");
 for (j=0;j<Joa.RowNo();j++){
 for (k=0;k<Joa.ColNo();k++){
 fprintf(fid," %4.2f ", Joa(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," detJoa is: %g \n\n", detJoa);

www.manaraa.com

95

Appendix A. (Continued)

// Calculating the 6X2 Jacobian based on the WMRA's base in the ground frame:
 phi=atan2(Twc1(1,0),Twc1(0,0));
 Jowc=WMRA_Jga(1, phi, Ta1(0,3), Ta1(1,3));
 fprintf(fid," Jowc is: \n\n");
 for (j=0;j<Jowc.RowNo();j++){
 for (k=0;k<Jowc.ColNo();k++){
 fprintf(fid," %4.2f ", Jowc(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," phi is: %g \n\n", phi);
 // Changing the Jacobian reference frame based on the choice of
which coordinates frame are referenced in the Cartesian control:
 // coord=1 for Ground Coordinates Control.
 // coord=2 for Wheelchair Coordinates Control.
 // coord=3 for Gripper Coordinates Control.
 if (coord==2){
 Joa=Joa;
 Jowctemp.Null(6,6);
 for (j=0; j<3; j++){
 for (k=0; k<3; k++){
 Jowctemp(j,k)=Twc1(k,j);
 }
 }
 for (j=3; j<6; j++){
 for (k=3; k<6; k++){
 Jowctemp(j,k)=Twc1(k-3,j-3);
 }
 }
 Jowctemp=Jowctemp*Jowc;
 Jowc=Jowctemp;
 }
 else if (coord==3){
 Joatemp.Null(6,6);
 for (j=0; j<3; j++){
 for (k=0; k<3; k++){
 Joatemp(j,k)=Ta1(k,j);
 }
 }
 for (j=3; j<6; j++){
 for (k=3; k<6; k++){
 Joatemp(j,k)=Ta1(k-3,j-3);
 }
 }
 Joatemp=Joatemp*Joa;
 Joa=Joatemp;
 Jowctemp.Null(6,6);
 for (j=0; j<3; j++){
 for (k=0; k<3; k++){
 Jowctemp(j,k)=T1(k,j);
 }
 }
 for (j=3; j<6; j++){
 for (k=3; k<6; k++){
 Jowctemp(j,k)=T1(k-3,j-3);
 }
 }
 Jowctemp=Jowctemp*Jowc;
 Jowc=Jowctemp;
 }
 else if (coord==1){
 Joatemp.Null(6,6);

www.manaraa.com

96

Appendix A. (Continued)

for (j=0; j<3; j++){
 for (k=0; k<3; k++){
 Joatemp(j,k)=Twc1(j,k);

}
 }
 for (j=3; j<6; j++){
 for (k=3; k<6; k++){
 Joatemp(j,k)=Twc1(j-3,k-3);
 }
 }
 Joatemp=Joatemp*Joa;
 Joa=Joatemp;
 Jowc=Jowc;
 }
 fprintf(fid," Joa is: \n\n");
 for (j=0;j<Joa.RowNo();j++){
 for (k=0;k<Joa.ColNo();k++){
 fprintf(fid," %4.2f ", Joa(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Jowc is: \n\n");
 for (j=0;j<Jowc.RowNo();j++){
 for (k=0;k<Jowc.ColNo();k++){
 fprintf(fid," %4.2f ", Jowc(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");

 //Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system
based on the ground frame:
 if (cart==2){
 Joa.SetSize(3,7);
 Joatemp.Null(7,3);
 Joatemp=~Joa;
 Joatemp=Joa*Joatemp;
 detJoa=sqrt(Joatemp.Det());
 Jowc.SetSize(3,2);
 Jo.SetSize(3,9);
 for (j=0; j<3; j++){
 for (k=0; k<7; k++){
 Jo(j,k)=Joa(j,k);
 }
 for (k=7; k<9; k++){
 Jo(j,k)=Jowc(j,k-7);
 }
 }
 Joatemp.Null(9,3);
 Joatemp=~Jo;
 Joatemp=Jo*Joatemp;
 detJo=sqrt(Joatemp.Det());
 }
 else {
 Jo.SetSize(6,9);
 for (j=0; j<6; j++){
 for (k=0; k<7; k++){
 Jo(j,k)=Joa(j,k);
 }
 for (k=7; k<9; k++){
 Jo(j,k)=Jowc(j,k-7);
 }

www.manaraa.com

97

Appendix A. (Continued)

}
 Joatemp=~Jo;
 Joatemp=Jo*Joatemp;
 detJo=sqrt(Joatemp.Det());
 }
 fprintf(fid," Jo is: \n\n");

for (j=0;j<Jo.RowNo();j++){
 for (k=0;k<Jo.ColNo();k++){
 fprintf(fid," %4.2f ", Jo(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," detJo is: %g \n\n", detJo);

 // Finding the Cartesian errors of the end effector:
 Matrix invTowc(1,1), invTo(1,1), Towctemp(1,1), Towctemp2(1,1),
Tttemp(4,4), Ttnew(4,4);
 if (cont==1){
 // Calculating the Position and Orientation errors of the
end effector, and the rates of motion of the end effector:
 if (coord==2){
 invTowc.Unit(4);
 Towctemp=Twc1;
 Towctemp.SetSize(3,3);
 Towctemp2=~Towctemp;
 Towctemp2*=(-1);
 Towctemp.Null(3,1);
 for (j=0; j<3; j++){
 Towctemp(j,0)=Twc1(j,3);
 }
 Towctemp=Towctemp2*Towctemp;
 for (j=0; j<3; j++){
 for (k=0; k<3; k++){
 invTowc(j,k)=Twc1(k,j);
 }
 invTowc(j,3)=Towctemp(j,0);
 }

 Tttemp.Null(4,4);
 for (j=0; j<4; j++){
 for (k=0; k<4; k++){
 Tttemp(j,k)=Tt[i][j][k];

 }
 }
 Ttnew=invTowc*Tiwc*Tttemp;
 dx=WMRA_delta(Ta1, Ttnew);
 }
 else if (coord==3){
 invTo.Unit(4);
 Towctemp=T1;
 Towctemp.SetSize(3,3);
 Towctemp2=~Towctemp;
 Towctemp2*=(-1);
 Towctemp.Null(3,1);
 for (j=0; j<3; j++){
 Towctemp(j,0)=T1(j,3);
 }
 Towctemp=Towctemp2*Towctemp;
 for (j=0; j<3; j++){
 for (k=0; k<3; k++){
 invTo(j,k)=T1(k,j);

www.manaraa.com

98

Appendix A. (Continued)

}
 invTo(j,3)=Towctemp(j,0);
 }

 Tttemp.Null(4,4);
 for (j=0; j<4; j++){
 for (k=0; k<4; k++){
 Tttemp(j,k)=Tt[i][j][k];

}
 }
 Ttnew=invTo*Ti*Tttemp;
 Unit.Unit(4);
 dx=WMRA_delta(Unit, Ttnew);
 }
 else {
 for (j=0; j<4; j++){
 for (k=0; k<4; k++){
 Tttemp(j,k)=Tt[i][j][k];
 }
 }
 dx=WMRA_delta(T1, Tttemp);
 }
 }
 else if (cont==2) {
 }
 else if (cont==3) {
 char tx1[8], ty1[8], tz1[8], rx1[8], ry1[8], rz1[8],
varscreenop[8], varexit1[9], varrun1[8];
 double tx, ty, tz, rx, ry, rz;
 double varexit, varscree;

 fstream results1 ("outputexit.txt", ios::in);
 if (!results1){
 cout<<"Can not open";
 }
 if (!results1.eof())
 {
 results1.getline(varscreenop, 8, '\t');
 results1.getline(varexit1, 8, '\t');
 results1.close();
 }
 varscreenopn = atoi (varscreenop);
 varexit = atof (varexit1);
 varscree = atof (varscreenop);

 if (varexit==0){
 MessageBox::Show("The system has been stopped","WMRA
STOP", MessageBoxButtons::OK,MessageBoxIcon::Exclamation);
 varexit=1;
 FILE * ex;
 ex = fopen("outputexit.txt","w");
 fprintf(ex,"%1.f\t%1.f\t\n",varscree, varexit);
 fclose(ex);
 }

 fstream results ("output.txt", ios::in);
 if (!results){
 cout<<"Can not open";
 }
 if (!results.eof())
 {
 results.getline(ty1, 8, '\t');
 results.getline(tz1, 8, '\t');

www.manaraa.com

99

Appendix A. (Continued)

results.getline(tx1, 8, '\t');
 results.getline(ry1, 8, '\t');
 results.getline(rz1, 8, '\t');
 results.getline(rx1, 8, '\t');

 results.close();
 }

 tx = atoi (tx1);
 ty = atoi (ty1);
 tz = atoi (tz1);
 rx = atoi (rx1);
 ry = atoi (ry1);
 rz = atoi (rz1);
 Matrix spdata(6,1);
 cout<<"tx = "<<tx<<endl;
 cout<<"ty = "<<ty<<endl;
 cout<<"tz = "<<tz<<endl;
 cout<<"rx = "<<rx<<endl;
 cout<<"ry = "<<ry<<endl;
 cout<<"rz = "<<rz<<endl;
 spdata(0,0)=tx/20;
 spdata(1,0)=-ty/40;
 spdata(2,0)=tz/30;
 spdata(3,0)=rx/1500;
 spdata(4,0)=-ry/900;
 spdata(5,0)=rz/1300;
 dt=0.05;
 dx=spdata;
 dx*=(v*dt);
 dg=0;//spdata(6,0);

 }
 else if (cont==4) {
 //dx=WMRA_psy(port1);
 //dx*=(v*dt);
 //dg=dx(6,0);
 //dx.SetSize(6,1);
 }
 else {
 char dx1[8], dx2[8], dx3[8], dx4[8], dx5[8], dx6[8],
dgx[8], varscreenop[8];
 dx.Null(6,1);

 fstream results ("outputtouch.txt", ios::in);
 if (!results){
 cout<<"Can not open";
 }

 if (!results.eof())
 {
 results.getline(dx1, 8, '\t');
 results.getline(dx2, 8, '\t');
 results.getline(dx3, 8, '\t');

results.getline(dx4, 8, '\t');
 results.getline(dx5, 8, '\t');
 results.getline(dx6, 8, '\t');
 results.getline(dgx, 8, '\t');
 results.getline(varscreenop, 8, '\t');

 results.close();
 }
 dx(0,0) = atoi (dx1);
 cout<<"dx1: "<<dx(0,0)<<"\n";

www.manaraa.com

100

Appendix A. (Continued)

dx(1,0) = atoi (dx2);
 cout<<"dx2: "<<dx(1,0)<<"\n";
 dx(2,0) = atoi (dx3);
 cout<<"dx3: "<<dx(2,0)<<"\n";
 dx(3,0) = atof (dx4);
 cout<<"dx4: "<<dx(3,0)<<"\n";
 dx(4,0) = atof (dx5);
 cout<<"dx5: "<<dx(4,0)<<"\n";
 dx(5,0) = atof (dx6);
 cout<<"dx6: "<<dx(5,0)<<"\n";
 dg = atoi (dgx);
 cout<<"dx7: "<<dg<<"\n";
 varscreenopn = atoi (varscreenop);
 cout<<"varscreen is: "<<varscreenopn<<"\n\n";
 dx*=(v*dt);
 }
 fprintf(fid," dx is: \n\n");
 for (j=0;j<dx.RowNo();j++){
 fprintf(fid," %4.2f ", dx(j,0));
 }
 fprintf(fid," \n\n\n");
 // cout<<"trying2"<<endl;

 // Changing the order of Cartesian motion in the case when gripper
reference frame is selected for control with the screen or psy or SpaceBall interfaces:
 if (coord==3 && cont>=3){
 dx(0,0)=-dx(1,0);
 dx(1,0)=-dx(2,0);
 dx(2,0)=dx(0,0);
 dx(3,0)=-dx(4,0);
 dx(4,0)=-dx(5,0);
 dx(5,0)=dx(3,0);
 // cout<<"trying3"<<endl;
 }
 if (cart==2) {
 dx.SetSize(3,1);
 // cout<<"trying4"<<endl;
 }

 // Calculating the resolved rate with optimization:
 // Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3=
SR-I & ENE, 4= P-I & ENE:
 fprintf(fid," dq is: \n\n");
 for (j=0;j<dq.RowNo();j++){
 fprintf(fid," %4.2f ", dq(j,0));
 }
 fprintf(fid," \n\n\n");

 if (WCA==2) {
 // cout<<"tryingbef52"<<endl;
 dq.SetSize(7,1);
 dq1.Null(7,1);
 dq1=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq, dx, dt, q1);
 dq1.SetSize(9,1);
 // cout<<"trying5"<<endl;
 }
 else if (WCA==3) {

Matrix dqtemp(2,1), dxtemp(2,1);
 dqtemp(0,0)=dq(7,0);
 dqtemp(1,0)=dq(8,0);
 dxtemp(0,0)=dx(0,0);
 dxtemp(1,0)=dx(1,0);
 Unit.Unit(1);
 dq1.Null(2,1);

www.manaraa.com

101

Appendix A. (Continued)

dq1=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dqtemp, dxtemp, dt, Unit);

 dqtemp.Null(9,1);
 dqtemp(7,0)=dq1(0,0);
 dqtemp(8,0)=dq1(1,0);
 dq1=dqtemp;
 }
 else {
 dq1.Null(9,1);
 dq1=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt, q1);
 }
 fprintf(fid," dq is: \n\n");
 for (j=0;j<dq1.RowNo();j++){
 fprintf(fid," %4.2f ", dq1(j,0));
 }
 fprintf(fid," \n\n\n");

 // Calculating the new Joint Angles:
 qn=q1+dq1;
 fprintf(fid," qn is: \n\n");
 for (j=0;j<qn.RowNo();j++){
 fprintf(fid," %4.2f ", qn(j,0));
 }
 fprintf(fid," \n\n\n");

 // cout<<"try"<<endl;

 // Calculating the new Transformation Matrices:
 Matrix dqtemp(2,1);
 dqtemp(0,0)=dq1(7,0);
 dqtemp(1,0)=dq1(8,0);
 WMRA_Tall(2, qn, dqtemp, Twc1, Tn, Tna, Tnwc, T01, T12, T23, T34,
T45, T56, T67);
 fprintf(fid," Tn is: \n\n");
 for (j=0;j<Tn.RowNo();j++){
 for (k=0;k<Tn.ColNo();k++){
 fprintf(fid," %4.2f ", Tn(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Tna is: \n\n");
 for (j=0;j<Tna.RowNo();j++){
 for (k=0;k<Tna.ColNo();k++){
 fprintf(fid," %4.2f ", Tna(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Tnwc is: \n\n");
 for (j=0;j<Tnwc.RowNo();j++){
 for (k=0;k<Tnwc.ColNo();k++){
 fprintf(fid," %4.2f ", Tnwc(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");

// A safety condition function to stop the joints that may cause colision of the arm with
itself, the wheelchair, or the human user:
 if (JLO==1 && WCA!=3){
 Matrix dqtemp2(2,1), dq2(7,1),dq3(7,1);
 dqtemp2(0,0)=dq1(7,0);
 dqtemp2(1,0)=dq1(8,0);
 for (j=0;j<7;j++){
 dq2(j,0)=dq1(j,0);

www.manaraa.com

102

Appendix A. (Continued)

}
 dq3=WMRA_collide(dq2, T01, T12, T23, T34, T45, T56, T67);
 // Re-calculating the new Joint Angles:
 dq1.Null(9,1);
 for (j=0;j<7;j++){
 dq1(j,0)=dq3(j,0);
 }
 for (j=7;j<9;j++){
 dq1(j,0)=dqtemp2(j-7,0);
 }
 qn=q1+dq1;

 // Re-calculating the new Transformation Matrices:

 WMRA_Tall(2, qn, dqtemp2, Twc1, Tn, Tna, Tnwc, T01, T12,
T23, T34, T45, T56, T67);
 }

 fprintf(fid," qn is: \n\n");
 for (j=0;j<qn.RowNo();j++){
 fprintf(fid," %4.2f ", qn(j,0));
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Tn is: \n\n");
 for (j=0;j<Tn.RowNo();j++){
 for (k=0;k<Tn.ColNo();k++){
 fprintf(fid," %4.2f ", Tn(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Tna is: \n\n");
 for (j=0;j<Tna.RowNo();j++){
 for (k=0;k<Tna.ColNo();k++){
 fprintf(fid," %4.2f ", Tna(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");
 fprintf(fid," Tnwc is: \n\n");
 for (j=0;j<Tnwc.RowNo();j++){
 for (k=0;k<Tnwc.ColNo();k++){
 fprintf(fid," %4.2f ", Tnwc(j,k));
 }
 fprintf(fid," \n");
 }
 fprintf(fid," \n\n\n");

 // Saving the plot data in case plots are required:
 if (plt==2){
 WMRA_Plots(1, L, dt, i, tt, qn, dq1, Tn, Tnwc, detJoa,
detJo);
 }

 // Updating Physical Arm:
 if (arm==1){
 ddt=ddt+dt;
 if (ddt>=0.5 || i>=(n+1)){
 Matrix dqtemp(10,1);

for (j=0; j<9; j++){
 dqtemp(j,0)=qn(j,0);
 }
 dqtemp(9,0)=dg;

www.manaraa.com

103

Appendix A. (Continued)

WMRA_ARM_Motion(2, 1, dqtemp, ddt, g);
 cout<<"dqtemp(9,0)"<<dqtemp(9,0)<<endl;
 wait(.5);
 ddt=0;
 cout<<"waitfdd= "<<endl;
 }
 }

 // Updating Virtual Reality Animation:
 if (vr==1){
 //WMRA_VR_Animation(2, Tnwc, qn);
 }
 // Updating Matlab Graphics Animation:
 if (ml==1){
 //WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34,
T45, T56, T67);
 }
 // Re-Drawing the Animation:
 if (vr==1 || ml==1){
 //drawnow;
 }

 // Updating the old values with the new values for the next
iteration:
 tt=tt+dt;
 fprintf(fid," tt is %g ", tt);
 fprintf(fid," \n\n\n");

 // Stopping the simulation when the exit button is pressed:
 if (cont==3 || cont==4 || cont==5){
 if (cont==3 || cont==4){
 // Exit myForm2;
 // myForm2.ShowDialog() ==
System::Windows::Forms::DialogResult::OK;
 }
 // cout<<"Sale o no: "<<varscreenopn<<"\n\n";
 if (varscreenopn == 1){
 n=n+1;
 }
 else {
 break;
 }
 }
 // Delay to comply with the required speed:
 endt=0;
 //time(&endt);
 endt=clock()/ CLOCKS_PER_SEC;
 //endt=clock()*CLK_TCK;
 timedif=0;
 //timedif=difftime(endt,startt);
 timedif=(endt-start2);
 if (timedif < tt){
 //wait((tt-timedif));
 }
 //endtt=clock()*CLK_TCK;
 //cout<<"\n"<<endtt;
 i++;
 if (cont==3){i=1;}
 }

 fclose(fid);

// Reading the elapsed time and printing it with the simulation time:
 if (cont==1 || cont==2){
 printf("\nSimula. time is %6.6f seconds.\n", total_time);

www.manaraa.com

104

Appendix A. (Continued)

}

 //time(&endf);
 //endf=clock()/ CLOCKS_PER_SEC;
 endf=clock()*CLK_TCK/1000;
 cout<<"\nEnd is "<<endf<<"\n\n";
 //cout<<"\nElapsed time is "<<difftime(endf,startt)*1000<<"\n\n";
 cout<<"\nElapsed time is "<<(endf-startt)<<"\n\n";

 // Plotting:
 if (plt==2){
 WMRA_Plots(2, L, dt, i, tt, qn, dq1, Tn, Tnwc, detJoa, detJo);
 }

 if (vr==1 || ml==1 || arm==1){
 // Going back to the ready position:
 cout << "\n Do you want to go back to the 'ready' position? \n
Press '1' for Yes, or press '2' for No. \n\n ";
 cin >> choice6;
 if (choice6==1){
 WMRA_any2ready(2, vr, ml, arm, Tnwc, qn, g);
 // Going back to the parking position:
 cout << "\n Do you want to go back to the 'parking'
position? \n Press '1' for Yes, or press '2' for No. \n\n ";
 cin >> choice7;
 if (choice7==1){
 Matrix temp(2,1);
 temp(0,0)=qn(7,0);
 temp(1,0)=qn(8,0);
 WMRA_ready2park(2, vr, ml, arm, Tnwc, temp,
g);
 }
 }
 // Closing the Arm library and Matlab
Graphics Animation and Virtual Reality Animation and Plots windows:
 cout << "\n Do you want to close all simulation windows and arm
controls? \n Press '1' for Yes, or press '2' for No. \n\n ";
 cin >> choice8;
 if (choice8==1){
 Matrix temp(1,1);
 temp.Null(1,1);
 if (arm==1){
 WMRA_ARM_Motion(3, 0, temp, 0, g);
 }
 if (vr==1){
 //WMRA_VR_Animation(3, 0, 0);
 }
 if (ml==1){
 //WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0);
 }
 if (plt==2){
 //close
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),figure(9),figure(1
0));
 }
 }
 }
 return 0;
}

www.manaraa.com

105

Appendix A. (Continued)

/* This function is for the resolved rate and optimization solution of the USF WMRA with
9 DOF.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "Opt.h"
#include "WCD.h"
#include "Jlimit.h"
#include "sign.h"
#include <limits>

using namespace std;
using namespace math;

Matrix WMRA_Opt(int i, float JLA, float JLO, Matrix Jo, float detJo, Matrix dq, Matrix
dx, float dt, Matrix q){

 extern Matrix dHo;
 dHo.Null(7,1);

 // Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:
 Matrix L(1,1);
 L=WMRA_WCD();
 Matrix qmin(1,7), qmax(1,7);
 WMRA_Jlimit(qmin, qmax);

 double inf = std::numeric_limits<double>::infinity();
 int WCA, wo, ko, j, k;
 Matrix pinvJo(7,7);
 Matrix dH(7,1);
 Matrix mul(1,1), mul1(1,1), mul2(1,1), Jotrans(7,7);
 Matrix W(7,7), dia(7,1), Winv(7,7);
 float dof;
 // The case when wheelchair-only control is required with no arm motion:
 if (i==0){
 WCA=3;
 // Calculating the Inverse of the Jacobian, which is always non-singular:
 Matrix Jotemp(2,2);
 for (j=0; j<2; j++){
 for (k=0; k<2; k++){
 Jotemp(j,k)=Jo(j,k);
 }
 }
 pinvJo=!Jotemp;
 // Calculating the joint angle change:
 // Here, dq of the wheels are translated from radians to distances
travelled after using the Jacobian.
 dq = pinvJo * dx;
 dq(0,0)=dq(0,0)*L(0,4);
 }
 else {
 // Creating the gradient of the optimization function to avoid joint
limits:
 dH.Null(7,1);
 //cout<<"dHo is \n\n"<<dHo<<"\n\n";

www.manaraa.com

106

Appendix A. (Continued)

if (JLA==1){
 for (j=0; j<7; j++){
 dH(j,0)=-0.25*pow((qmax(0,j)-qmin(0,j)),2)*(2*q(j,0)-
qmax(0,j)-qmin(0,j))/(pow((qmax(0,j)-q(j,0)),2)*pow((q(j,0)-qmin(0,j)),2));
 // Re-defining the weight in case the joint is moving away
from it's limit or the joint limit was exceeded:
 if (abs(dH(j,0)) < abs(dHo(j,0)) && q(j,0) < qmax(0,j) &&
q(j,0) > qmin(0,j)){
 dH(j,0)=0;
 }
 else if (abs(dH(j,0)) < abs(dHo(j,0)) && (q(j,0) >=
qmax(0,j) || q(j,0) <= qmin(0,j))){
 dH(j,0)=inf;
 }
 else if (abs(dH(j,0)) > abs(dHo(j,0)) && (q(j,0) >=
qmax(0,j) || q(j,0) <= qmin(0,j))){
 dH(j,0)=0;
 }
 }
 }
 dHo = dH;
 //cout<<"dHo is \n\n"<<dHo<<"\n\n";
 // The case when arm-only control is required with no wheelchair motion:
 if (dq.RowNo()==7){
 W.Null(7,7);
 Winv.Null(7,7);
 WCA=2;
 wo=20000000;
 ko=350000;
 // The weight matrix to be used for the Weighted Least Norm
Solution with Joint Limit Avoidance:
 for (j=0; j < 7; j++){
 for (k=0; k < 7; k++){
 if (j==k){
 W(j,k)=1+abs(dH(j,0));
 dia(j,0)=W(j,k);
 // The inverse of the diagonal weight
matrix:
 Winv(j,k)=1/(dia(j,0));

 }
 }
 }
 }
 // The case when wheelchair-and-arm control is required:
 else {
 WCA=1;
 wo=34000000;
 ko=13;
 // The weight matrix to be used for the Weighted Least Norm
Solution:
 W.Null(9,9);
 W(7,7)=10;
 W(8,8)=10;
 for (j=0; j < 7; j++){
 for (k=0; k < 7; k++){
 if (j==k){
 W(j,k)=1+abs(dH(j,0));
 }
 }
 }
 dia.SetSize(9,1);
 Winv.Null(9,9);
 for (j=0; j < 9; j++){
 for (k=0; k < 9; k++){

www.manaraa.com

107

Appendix A. (Continued)

if (j==k){
 dia(j,0)=W(j,k);
 // The inverse of the diagonal weight
matrix:
 Winv(j,k)=1/(dia(j,0));
 }

}
 }
 }

 // Redefining the determinant based on the weight:
 if (i==1 || i==2){
 Jotrans=~Jo;
 // cout<<"Jo' is\n\n"<<Jotrans<<"\n\n";
 mul1=Winv*Jotrans;
 // cout<<"mul1 is\n\n"<<mul1<<"\n\n";
 mul2=Jo*mul1;
 // cout<<"mul2 is\n\n"<<mul2<<"\n\n";
 mul=mul2;
 //mul= Jo * Winv * Jotrans;
 // cout<<"mul is\n\n"<<mul<<"\n\n";
 detJo= sqrt(mul.Det());
 // cout<<"detJo is\n\n"<<detJo<<"\n\n";
 }
 dof=dx.RowNo();
// cout<<"dof is\n\n"<<dof<<"\n\n";
 }

 // SR-Inverse and Weighted Least Norm Optimization:
 float sf;
 if (i==1){
 // Calculating the variable scale factor, sf:
 if (detJo<wo){
 sf=ko*pow((1-detJo/wo),2); // from eq. 9.79 page 268 of
Nakamura's book.
 }
 else {
 sf=0;
 }
 // Calculating the SR-Inverse of the Jacobian:
 Matrix sfm(2,2);
 sfm.Unit(dof);
 sfm*=(sf);
 mul= mul + sfm;
 mul=!mul;
 pinvJo=Winv*Jotrans*mul;
 //cout<<"pinvJo is\n\n"<<pinvJo<<"\n\n";
 // Calculating the joint angle change optimized based on the Weighted
Least Norm Solution:
 // Here, dq of the wheels are translated from radians to distances
travelled after using the Jacobian.
 if (WCA==2){
 dq = pinvJo * dx;
 }
 else {
 dq = pinvJo * dx;
 // cout<<"dq is\n\n"<<dq<<"\n\n";
 dq(7,0)=dq(7,0)*L(0,4);
 }
 // cout<<"dq is\n\n"<<dq<<"\n\n";
 }

 // Pseudo Inverse and Weighted Least Norm Optimization:
 else if (i==2){

www.manaraa.com

108

Appendix A. (Continued)

// Calculating the Pseudo Inverse of the Jacobian:
 mul=!mul;
 pinvJo=Winv*Jotrans*mul;
 // Calculating the joint angle change optimized based on the Weighted
Least Norm Solution:

// Here, dq of the wheels are translated from radians to distances travelled after using
the Jacobian.
 if (WCA==2){
 dq=pinvJo*dx;
 }
 else {
 dq=pinvJo*dx;
 dq(7,0)=dq(7,0)*L(0,4);
 }
 }

 // SR-Inverse and Projection Gradient Optimization based on Euclidean norm of
errors:
 else if (i==3){
 Jotrans=~Jo;
 // Calculating the variable scale factor, sf:
 if (detJo<wo){
 sf=ko*pow((1-detJo/wo),2); // from eq. 9.79 page 268 of
Nakamura's book.
 }
 else {
 sf=0;
 }
 // Calculating the SR-Inverse of the Jacobian:
 Matrix sfm(2,2);
 sfm.Unit(dof);
 sfm*=(sf);
 // cout<<"\n sfm is: "<<sfm<<"\n";
 // cout<<"\n Jo is: "<<Jo<<"\n";
 // cout<<"\n Jotrans is: "<<Jotrans<<"\n";
 mul= Jo * Jotrans;
 // cout<<"\n mul is: "<<mul<<"\n";
 mul= mul + sfm;
 // cout<<"\n mul 2 is: "<<mul<<"\n";
 mul=!mul;
 // cout<<"\n mul 3 is: "<<mul<<"\n";
 pinvJo=Jotrans * mul;
 // cout<<"\n pinvJo is: "<<pinvJo<<"\n";
 // Calculating the joint angle change optimized based on minimizing the
Euclidean norm of errors:
 // Here, dq of the wheels are translated from distances travelled to
radians, and back after using the Jacobian.
 Matrix unit(7,7);
 if (WCA==2){
 unit.Unit(7);
 mul=unit-pinvJo*Jo;
 //dq=pinvJo*dx+mul*dq;
 mul*=(0.001);
 dq=pinvJo*dx+mul*dH;
 // cout<<"\n dq is: "<<pinvJo<<"\n";

 }
 else {
 //dq(7,0)=dq(7,0)/L(0,4);
 unit.Unit(9);
 mul=unit-pinvJo*Jo;
 //dq=pinvJo*dx+mul*dq;
 mul*=(0.001);

www.manaraa.com

109

Appendix A. (Continued)

dH.SetSize(9,1);
 dq=pinvJo*dx+mul*dH;
 dq(7,0)=dq(7,0)*L(0,4);
 // cout<<"\n dq is: "<<pinvJo<<"\n";
 }
 }
 // Pseudo Inverse and Projection Gradient Optimization based on Euclidean
norm of errors:
 else if (i==4){

Jotrans=~Jo;
 // Calculating the Pseudo Inverse of the Jacobian:
 mul= Jo * Jotrans;
 mul=!mul;
 pinvJo=Jotrans * mul;
 // Calculating the joint angle change optimized based on minimizing the
Euclidean norm of errors:
 // Here, dq of the wheels are translated from distances travelled to
radians, and back after using the Jacobian.
 Matrix unit(7,7);
 if (WCA==2){
 unit.Unit(7);
 mul=unit-pinvJo*Jo;
 //dq=pinvJo*dx+mul*dq;
 mul*=(0.001);
 dq=pinvJo*dx+mul*dH;
 }
 else {
 //dq(7,0)=dq(7,0)/L(0,4);
 unit.Unit(9);
 mul=unit-pinvJo*Jo;
 //dq=pinvJo*dx+mul*dq;
 mul*=(0.001);
 dH.SetSize(9,1);
 dq=pinvJo*dx+mul*dH;
 dq(7,0)=dq(7,0)*L(0,4);
 }
 }
 if (JLO==1){
 // A safety condition to stop the joint that reaches the joint limits in
the arm:
 if (WCA!=3){
 for (k=0; k<7; k++){
 if (q(k,0) >= qmax(0,k) || q(k,0) <= qmin(0,k)){
 dq(k,0)=0;
 }
 }
 // cout<<"dq is\n\n"<<dq<<"\n\n";
 }

 // A safety condition to slow the joint that exceeds the velocity limits
in the WMRA:
 Matrix dqmax(2,1);
 if (WCA==3){
 dqmax(0,0)=100;
 dqmax(1,0)=0.15;
 dqmax*=(dt); // Joity velocity limits when the time increment
is dt second.
 }
 else {
 dqmax.Null(9,1);
 for (k=0; k<7; k++){
 dqmax(k,0)=0.5;
 }

www.manaraa.com

110

Appendix A. (Continued)

dqmax(7,0)=100;
 dqmax(8,0)=0.15;
 // cout<<"dqmax is\n\n"<<dqmax<<"\n\n";
 // cout<<"dt is\n\n"<<dt<<"\n\n";
 dqmax*=(dt); // Joint velocity limits when the time increment
is dt second.
 // cout<<"dqmax is\n\n"<<dqmax<<"\n\n";
 }
 for (k=0; k<dq.RowNo(); k++){
 if (abs(dq(k,0)) >= dqmax(k,0)){
 dq(k,0)=sign(dq(k,0))*dqmax(k,0);
 }
 }

// cout << "\ndq is\n\n" << dq ;
 }

 return dq;

}

/* This function gives the Transformation Matrix of the WMRA's base on the wheelchair
with 2 DOF, given the desired x,y position and z rotation angle.
Dimentions are as supplies, angles are in radians.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "WCD.h"
#include "p2T.h"
using namespace std;
using namespace math;

Matrix WMRA_p2T(float x, float y, float a){

 Matrix T(4,4);

 //Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:
 Matrix L(1,5);
 L=WMRA_WCD();
 //Defining the Transformation Matrix:

 T.Unit(4);
 T(0,0)= cos(a);
 T(0,1)= -sin(a);
 T(0,3)= x;
 T(1,0)= sin(a);
 T(1,1)= cos(a);
 T(1,3)= y;
 T(2,3)= L(0,3)+L(0,4);
 return T;

}

www.manaraa.com

111

Appendix A. (Continued)

/* This "new USF WMRA" function SIMULATES the arm going from the parking position to the
ready position with ANIMATION. All angles are in Radians.
 The parking position is assumed to be qi=[0;pi/2;0;pi;0;0;0] (Radians), the ready
position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0] (Radians).
 ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3
--> close the figures.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres & Punya Basnayaka%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "park2ready.h"
#include "ArmMotion.h"
#include "DH.h"
#include "q2T.h"
#include <time.h>
using namespace std;
using namespace math;

void WMRA_park2ready(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qiwc, Galil
&g){
Matrix zero(1,1);
zero.Null(1,1);
 if (ini==3){
 if (arm==1){
 try {
 WMRA_ARM_Motion(ini, 0, zero, 0, g);
 }
 catch (...) {
 cout << "Exception 1 occurred";
 }
 }
 if (vr==1){
 /*try {
 WMRA_VR_Animation(ini, 0, 0);
 }
 catch (...) {
 cout << "Exception 2 occurred";
 }*/
 }
 if (ml==1){
 /*try {
 WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 }
 catch (...) {
 cout << "Exception 3 occurred";
 }*/
 }
 return;
 }

 // Defining the used conditions:
 float qi2 [7]= {0, PI/2, 0, PI, 0, 0, 0}; // Initial joint angles (Parking
Position).
 float qd2 [7]= {PI/2, PI/2, 0, PI/2, PI/2, PI/2, 0}; // Final joint angles (Ready
Position).
 Matrix qd(7,1), qi(7,1);
 float ts, dt, ddt;

www.manaraa.com

112

Appendix A. (Continued)

int n, j;
 for (j = 0 ; j < 7 ; j++) {
 qi(j,0)=qi2[j];
 qd(j,0)=qd2[j];
 }
 ts=10; // (5 or 10 or 20) Simulation time to move the arm from any position to
the ready position.
 n=100; // Number of time steps.
 dt=ts/n; // The time step to move the arm from any position to the ready
position.
 Matrix dq(1,1);
 dq=qd-qi;
 dq/=(0.5*n+5); // Joint angle change at every time step.

 FILE * fil;
 fil = fopen("Park2ready.txt","w");
 fprintf(fil," qi is: \n\n");

int k;
 for (j=0;j<qi.RowNo();j++){
 for (k=0;k<qi.ColNo();k++){
 fprintf(fil," %4.2f ", qi(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," qd is: \n\n");
 for (j=0;j<qd.RowNo();j++){
 for (k=0;k<qd.ColNo();k++){
 fprintf(fil," %4.2f ", qd(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," ts is %4.2f ", ts);
 fprintf(fil," \n\n\n");
 fprintf(fil," n is %d ", n);
 fprintf(fil," \n\n\n");
 fprintf(fil," dt is %4.2f ", dt);
 fprintf(fil," \n\n\n");
 fprintf(fil," dq is: \n\n");
 for (j=0;j<dq.RowNo();j++){
 for (k=0;k<dq.ColNo();k++){
 fprintf(fil," %4.2f ", dq(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");

 // Initializing the physical Arm:
 if (arm==1){
 zero.Null(10,1);
 for (j = 0 ; j < 7 ; j++) {
 zero(j,0)=qi(j,0);
 }
 zero(7,0)=qiwc(0,0);
 zero(8,0)=qiwc(1,0);
 WMRA_ARM_Motion(ini, 2, zero, dt, g);
 ddt=0;
 }

 fprintf(fil," qi is: \n\n");
 for (j=0;j<qi.RowNo();j++){
 for (k=0;k<qi.ColNo();k++){
 fprintf(fil," %4.2f ", qi(j,k));

www.manaraa.com

113

Appendix A. (Continued)

}
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," qiwc is: \n\n");
 for (j=0;j<qiwc.RowNo();j++){
 for (k=0;k<qiwc.ColNo();k++){
 fprintf(fil," %4.2f ", qiwc(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");

 // Initializing Virtual Reality Animation:
 if (vr==1){

// WMRA_VR_Animation(ini, Tiwc, qi);
 }

 // Initializing Robot Animation in Matlab Graphics:
 Matrix DH(1,1);
 Matrix T01(4,4), T12(4,4), T23(4,4), T34(4,4), T45(4,4), T56(4,4), T67(4,4);
 Matrix Ti(4,4), Td(4,4);

 if (ml==1){
 // Inputting the D-H Parameters in a Matrix form:
 DH=WMRA_DH(qi);

 // Calculating the transformation matrices of each link:
 T01 =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2));
 //T2
 T12 =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2));
 //T3
 T23 =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2));
 //T4
 T34 =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2));
 //T5
 T45 =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2));
 //T6
 T56 =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2));
 //T7
 T67 =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2));
 // Calculating the Transformation Matrix of the initial and desired arm
positions:
 Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67;
 Td=Tiwc*WMRA_q2T(qd);
 //WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67);
 }

 // Initialization:
 Matrix qo(1,1);
 float tt;
 qo=qi;
 tt=0;

 fprintf(fil," qo is: \n\n");
 for (j=0;j<qo.RowNo();j++){
 for (k=0;k<qo.ColNo();k++){

www.manaraa.com

114

Appendix A. (Continued)

fprintf(fil," %4.2f ", qo(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," tt is %4.2f ", tt);
 fprintf(fil," \n\n\n");

 Matrix qn(1,1);
 clock_t startt, endt, endf;
 double timedif;
 Matrix T1a(1,1), T2a(1,1), T3a(1,1), T4a(1,1), T5a(1,1), T6a(1,1), T7a(1,1);

 qn.Null(7,1);
 while (tt <= ts) {
 // Starting a timer:
 startt=0;

startt=clock()/ CLOCKS_PER_SEC;

 // Calculating the new Joint Angles:
 if (tt==0){
 qn=qo;
 }
 else if (tt < (dt*(0.5*n-5))){
 qn(0,0)=qo(0,0)+dq(0,0);
 }
 else if (tt < (dt*(0.5*n+5))){
 qn=qo+dq;
 }
 else if (tt < (dt*(n-1))){
 for (j=1;j<7;j++){
 qn(j,0)=qo(j,0)+dq(j,0);
 }
 }
 fprintf(fil," qn is: \n\n");
 for (j=0;j<qn.RowNo();j++){
 for (k=0;k<qn.ColNo();k++){
 fprintf(fil," %4.2f ", qn(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," ddt is %4.2f ", ddt);
 fprintf(fil," \n\n\n");
 // Updating the physical Arm:
 if (arm==1) {
 float ddt2=0;
 ddt2=ddt+dt;
 if (ddt2>=0.5 || tt>=ts){
 zero.Null(10,1);
 for (j = 0 ; j < 7 ; j++) {
 zero(j,0)=qn(j,0);
 }
 zero(7,0)=qiwc(0,0);
 zero(8,0)=qiwc(1,0);
 WMRA_ARM_Motion(2, 1, zero, ddt2, g);
 ddt2=0;
 }
 ddt=0;
 ddt=ddt2;
 }

 // Updating Virtual Reality Animation:

www.manaraa.com

115

Appendix A. (Continued)

if (vr==1){
 /*zero.Null(9,1);
 for (j = 0 ; j < 7 ; j++) {
 zero(j,0)=qn(j,0);
 }
 zero(7,0)=qiwc(0,0);
 zero(8,0)=qiwc(1,0);*/
 //WMRA_VR_Animation(2, Tiwc, zero);
 }

 // Updating Matlab Animation:
 if (ml==1){
 // Calculating the new Transformation Matrix:
 T1a =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(qn(0,0))*WMRA_transl(0,0,DH(0,2));
 //T2
 T2a =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(qn(1,0))*WMRA_transl(0,0,DH(1,2));
 //T3
 T3a =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(qn(2,0))*WMRA_transl(0,0,DH(2,2));
 //T4
 T4a =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(qn(3,0))*WMRA_transl(0,0,DH(3,2));
 //T5
 T5a =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(qn(4,0))*WMRA_transl(0,0,DH(4,2));
 //T6
 T6a =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(qn(5,0))*WMRA_transl(0,0,DH(5,2));
 //T7
 T7a =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(qn(6,0))*WMRA_transl(0,0,DH(6,2));

 //WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a);
 }

 // Updating the old values with the new values for the next iteration:

 qo.Null(7,1);
 qo=qn;
 tt=tt+dt;

 fprintf(fil," qo is: \n\n");
 for (j=0;j<qo.RowNo();j++){
 for (k=0;k<qo.ColNo();k++){
 fprintf(fil," %4.2f ", qo(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," tt is %4.2f ", tt);
 fprintf(fil," \n\n\n");

 // Pausing for the speed sync:
 endt=0;
 endt=clock()/ CLOCKS_PER_SEC;
 timedif=0;
 timedif=endt-startt;
 wait((dt-timedif));

 }
 fclose(fil);
}

www.manaraa.com

116

Appendix A. (Continued)

/* This function plots different animation variables for USF WMRA with 9 DOF.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/
#include "matrix.h"
#include "plots2.h"
#include "T2rpy.h"
#include <math.h>
using namespace std;
using namespace math;
#define PI 3.14159265
#define r2d 180/PI //Conversions from Radians to Degrees.

void WMRA_Plots(int st, Matrix L, float dt, int i, float tt, Matrix qn, Matrix dq, Matrix
Tn, Matrix Tnwc, float detjoa, float detjo){

// Calling global variables:
 extern Matrix timep, q1, q2, q3, q4, q5, q6, q7, qll, qrr, qd1, qd2, qd3, qd4,
qd5, qd6, qd7, qdl, qdr, x, y, z, roll, pitch, yaw, xc, yc, zc, rollc, pitchc, yawc,
detJoap, detJop;

 timep.SetSize(i+2,1); q1.SetSize(i+2,1); q2.SetSize(i+2,1); q3.SetSize(i+2,1);
q4.SetSize(i+2,1); q5.SetSize(i+2,1); q6.SetSize(i+2,1); q7.SetSize(i+2,1);
qll.SetSize(i+2,1); qrr.SetSize(i+2,1); qd1.SetSize(i+2,1); qd2.SetSize(i+2,1);
qd3.SetSize(i+2,1); qd4.SetSize(i+2,1); qd5.SetSize(i+2,1); qd6.SetSize(i+2,1);
qd7.SetSize(i+2,1); qdl.SetSize(i+2,1); qdr.SetSize(i+2,1); x.SetSize(i+2,1);
y.SetSize(i+2,1); z.SetSize(i+2,1); roll.SetSize(i+2,1); pitch.SetSize(i+2,1);
yaw.SetSize(i+2,1); xc.SetSize(i+2,1); yc.SetSize(i+2,1); zc.SetSize(i+2,1);
rollc.SetSize(i+2,1); pitchc.SetSize(i+2,1); yawc.SetSize(i+2,1); detJoap.SetSize(i+2,1);
detJop.SetSize(i+2,1);

// Data collection at every iteration:
 if (st==1){

 // Generating a time vector for plotting:
 timep(i,0)=tt;
 // Joint Angles:
 q1(i,0)=qn(0,0)*r2d;
 q2(i,0)=qn(1,0)*r2d;
 q3(i,0)=qn(2,0)*r2d;
 q4(i,0)=qn(3,0)*r2d;
 q5(i,0)=qn(4,0)*r2d;
 q6(i,0)=qn(5,0)*r2d;
 q7(i,0)=qn(6,0)*r2d;
 qll(i,0)=qn(7,0)-L(0,0)*qn(8,0)/2;
 qrr(i,0)=qn(7,0)+L(0,0)*qn(8,0)/2;

 // Joint Velocities:
 qd1(i,0)=r2d*dq(0,0)/dt;
 qd2(i,0)=r2d*dq(1,0)/dt;
 qd3(i,0)=r2d*dq(2,0)/dt;
 qd4(i,0)=r2d*dq(3,0)/dt;
 qd5(i,0)=r2d*dq(4,0)/dt;
 qd6(i,0)=r2d*dq(5,0)/dt;
 qd7(i,0)=r2d*dq(6,0)/dt;
 qdl(i,0)=(dq(7,0)-L(0,0)*dq(8,0)/2)/dt;
 qdr(i,0)=(dq(7,0)+L(0,0)*dq(8,0)/2)/dt;

www.manaraa.com

117

Appendix A. (Continued)

// Hand Position and Orientation:
 x(i,0)=Tn(0,3);
 y(i,0)=Tn(1,3);
 z(i,0)=Tn(2,3);
 Matrix or(1,1);
 or.Null(1,1);
 or=WMRA_T2rpy(Tn);
 roll(i,0)=or(0,0)*r2d;
 pitch(i,0)=or(1,0)*r2d;
 yaw(i,0)=or(2,0)*r2d;

 // Arm Base Position and Orientation on the Wheelchair:
 xc(i,0)=Tnwc(0,3);
 yc(i,0)=Tnwc(1,3);
 zc(i,0)=Tnwc(2,3);
 Matrix orc(1,1);
 orc.Null(1,1);
 orc=WMRA_T2rpy(Tnwc);
 rollc(i,0)=orc(0,0)*r2d;
 pitchc(i,0)=orc(1,0)*r2d;
 yawc(i,0)=orc(2,0)*r2d;

 // Manipulability Measure:
 detJoap(i,0)=detjoa;
 detJop(i,0)=detjo;
 }
 // Plotting the data in graphas:
 else {
 int j;

 FILE * fid;
 fid = fopen("plots.cvs","w");
 fprintf(fid," time \t qd1 \t qd2 \t qd3 \t qd4 \t qd5 \t qd6 \t qd7 \t\t
time \t qdl \t qdr \t\t time \t q1 \t q2 \t q3 \t q4 \t q5 \t q6 \t q7 \t\t time \t qll
\t qrr \t\t time \t x \t y \t z \t\t time \t roll \t pitch \t yaw \t\t time \t xc \t yc
\t zc \t\t time \t rollc \t pitchc \t yawc \t\t time \t detJoa \t detJo \n");
 for (j=0; j<timep.RowNo(); j++){
 fprintf(fid," %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t\t %g
\t %g \t %g \t\t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t\t %g \t %g \t %g \t\t %g
\t %g \t %g \t %g \t\t %g \t %g \t %g \t %g \t\t %g \t %g \t %g \t %g \t\t %g \t %g \t %g
\t %g \t\t %g \t %g \t %g\n", timep(j,0) , qd1(j,0) , qd2(j,0) , qd3(j,0) , qd4(j,0) ,
qd5(j,0) , qd6(j,0) , qd7(j,0), timep(j,0) , qdl(j,0) , qdr(j,0), timep(j,0) , q1(j,0) ,
q2(j,0) , q3(j,0) , q4(j,0) , q5(j,0) , q6(j,0) , q7(j,0), timep(j,0) , qll(j,0) ,
qrr(j,0), timep(j,0) , x(j,0) , y(j,0), z(j,0), timep(j,0) , roll(j,0) , pitch(j,0),
yaw(j,0), timep(j,0) , xc(j,0) , yc(j,0), zc(j,0), timep(j,0) , rollc(j,0) , pitchc(j,0),
yawc(j,0), timep(j,0) , detJoap(j,0) , detJop(j,0));
 }
 fclose(fid);

 }

}

www.manaraa.com

118

Appendix A. (Continued)

/* This function uses a 3rd order Polynomial with no Blending factor to find a smooth
trajectory points of a variable "q" along a streight line, given the initial and final
variable values and the number of trajectory points.
The output is the variable position.
See Eqs. 7.3 and 7.6 page 204,205 of Craig Book

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "Polynomial.h"
using namespace std;
using namespace math;

#ifndef _NO_TEMPLATE
typedef matrix<double> Matrix;
#else
typedef matrix Matrix;
#endif

Matrix WMRA_Polynomial(float qi, float qf, float n){

 Matrix qtp(2,1);

 float tt, tf, dt;
 int i;
 tt=0;
 tf=abs(qf-qi);
 dt=tf/(n-1);

 float *qttemp;
 qttemp = new float[n];

 for (i=0; i<n; i++){
 if (tf<=0.001){
 qttemp[i]=qi;
 }
 else {
 qttemp[i]=qi+(qf-qi)*3*pow(tt,2)/pow(tf,2)-(qf-
qi)*2*pow(tt,3)/pow(tf,3); //From Eq.7.3 and 7.6 page 204,205 of Craig Book
 }
 tt = tt + dt;
 }
 qtp.SetSize(n,1);
 for (i=0; i < n; i++){
 qtp(i,0) = qttemp[i];
 }
 delete [] qttemp;

 return qtp;

}

www.manaraa.com

119

Appendix A. (Continued)

/* This function gives the Transformation Matrix of the new USF WMRA with 7 DOF, given
the joint angles in Radians.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "DH.h"
#include "Rotx.h"
#include "Rotz.h"
#include "Transl.h"
#include "q2T.h"
#include <time.h>

using namespace std;
using namespace math;

void wait (int seconds)
{
 clock_t endwait;
 endwait = clock () + seconds * CLOCKS_PER_SEC ;
 while (clock() < endwait) {}
}

Matrix WMRA_q2T(Matrix q){

 Matrix T(4,4);
 // Inputting the D-H Parameters in a Matrix form:
 Matrix DH(1,1);
 DH=WMRA_DH(q);
 // Calculating the transformation matrices of each link:
 Matrix T1(4,4),T2(4,4),T3(4,4),T4(4,4),T5(4,4),T6(4,4),T7(4,4),Tttemp(4,4);
 //T1
 T1 =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2));
 //T2
 T2 =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2));
 //T3
 T3 =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2));
 //T4
 T4 =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2));
 //T5
 T5 =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2));
 //T6
 T6 =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2));
 //T7
 T7 =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2));
 //Calculating the total Transformation Matrix of the given arm position:
 T=T1*T2*T3*T4*T5*T6*T7;

 return T;
}

www.manaraa.com

120

Appendix A. (Continued)

/* This "new USF WMRA" function SIMULATES the arm going from the ready position to any
position with ANIMATION. All angles are in Radians.
 The ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0] (Radians).
 ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3
--> close the figures.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres & Punya A. Basnayaka%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "ready2any.h"
#include "ArmMotion.h"
#include "DH.h"
#include "q2T.h"
#include <time.h>
using namespace std;
using namespace math;

void WMRA_ready2any(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qd, Galil &g){
Matrix zero(1,1);
zero.Null(1,1);
 if (ini==3){
 if (arm==1){
 try {
 WMRA_ARM_Motion(ini, 0, zero, 0, g);
 }
 catch (...) {
 cout << "Exception 1 occurred";
 }
 }
 if (vr==1){
 /*try {
 WMRA_VR_Animation(ini, 0, 0);
 }
 catch (...) {
 cout << "Exception 2 occurred";
 }*/
 }
 if (ml==1){
 /*try {
 WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 }
 catch (...) {
 cout << "Exception 3 occurred";
 }*/
 }
 return;
 }

 // Defining the used conditions:
 float qi2 [7]= {PI/2, PI/2, 0, PI/2, PI/2, PI/2, 0}; // Initial joint angles
(Ready Position).
 Matrix qi(7,1);
 float ts, dt, ddt;
 int n, j;
 for (j = 0 ; j < 7 ; j++) {
 qi(j,0)=qi2[j];
 }

www.manaraa.com

121

Appendix A. (Continued)

ts=10; // (5 or 10 or 20) Simulation time to move the arm from any position to the ready
position.
 n=100; // Number of time steps.
 dt=ts/n; // The time step to move the arm from any position to the ready
position.

 // Initializing the physical Arm:
 if (arm==1){
 qi.SetSize(10,1);
 WMRA_ARM_Motion(ini, 2, qi, dt, g);
 ddt=0;
 qi.SetSize(7,1);
 }

 // Initializing Virtual Reality Animation:
 if (vr==1){
 //qi.SetSize(9,1);
 // WMRA_VR_Animation(ini, Tiwc, qi);
 //qi.SetSize(7,1);
 }

 // Initializing Robot Animation in Matlab Graphics:
 Matrix DH(1,1);
 Matrix T01(4,4), T12(4,4), T23(4,4), T34(4,4), T45(4,4), T56(4,4), T67(4,4);
 Matrix Ti(4,4), Td(4,4);

 if (ml==1){
 // Inputting the D-H Parameters in a Matrix form:
 DH=WMRA_DH(qi);

 // Calculating the transformation matrices of each link:
 T01 =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2));
 //T2
 T12 =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2));
 //T3
 T23 =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2));
 //T4
 T34 =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2));
 //T5
 T45 =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2));
 //T6
 T56 =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2));
 //T7
 T67 =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2));
 // Calculating the Transformation Matrix of the initial and desired arm
positions:
 Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67;
 Td=Tiwc*WMRA_q2T(qd);
 //WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67);
 }

 // Check for the shortest route:
 Matrix diff(7,1);
 for (j = 0 ; j < 7 ; j++) {
 diff(j,0)=qd(j,0)-qi(j,0);
 }
 for (j = 0 ; j < 7 ; j++) {
 if (diff(j,0) > PI) {

www.manaraa.com

122

Appendix A. (Continued)

diff(j,0)=diff(j,0)-2*PI;
 }
 else if (diff(j,0) < (-PI)) {
 diff(j,0)=diff(j,0)+2*PI;
 }
 }

// Joint angle change at every time step.
 diff/=(n);
 Matrix dq(7,1);
 for (j = 0 ; j < 7 ; j++) {
 dq(j,0)=diff(j,0);
 }

 // Initialization:
 Matrix qo(1,1);
 float tt;
 qo=qi;
 tt=0;

 Matrix qn(1,1);
 clock_t startt, endt, endf;
 double timedif;
 Matrix T1a(1,1), T2a(1,1), T3a(1,1), T4a(1,1), T5a(1,1), T6a(1,1), T7a(1,1);

 while (tt <= (ts-dt)) {
 // Starting a timer:
 startt=0;
 startt=clock()/ CLOCKS_PER_SEC;

 // Calculating the new Joint Angles:
 qn.Null(7,1);
 qn=qo+dq;

 // Updating the physical Arm:
 if (arm==1) {
 float ddt2;
 ddt2=0;
 ddt2=ddt+dt;
 if (ddt>=0.5 || tt>=(ts-dt)){
 qn.SetSize(10,1);
 WMRA_ARM_Motion(2, 1, qn, ddt2, g);
 ddt=0;
 qn.SetSize(7,1);
 }
 ddt=0;
 ddt=ddt2;
 }

 // Updating Virtual Reality Animation:
 if (vr==1){
 //qn.SetSize(9,1);
 //WMRA_VR_Animation(2, Tiwc, qn);
 }

 // Updating Matlab Animation:
 if (ml==1){
 // Calculating the new Transformation Matrix:
 T1a =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(qn(0,0))*WMRA_transl(0,0,DH(0,2));
 //T2
 T2a =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(qn(1,0))*WMRA_transl(0,0,DH(1,2));

www.manaraa.com

123

Appendix A. (Continued)

//T3
 T3a =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(qn(2,0))*WMRA_transl(0,0,DH(2,2));
 //T4
 T4a =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(qn(3,0))*WMRA_transl(0,0,DH(3,2));
 //T5
 T5a =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(qn(4,0))*WMRA_transl(0,0,DH(4,2));
 //T6
 T6a =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(qn(5,0))*WMRA_transl(0,0,DH(5,2));
 //T7
 T7a =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(qn(6,0))*WMRA_transl(0,0,DH(6,2));

 //WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a);
 }

 // Updating the old values with the new values for the next iteration:

 qo.Null(7,1);
 qo=qn;
 tt=tt+dt;

 // Pausing for the speed sync:
 endt=0;
 endt=clock()/ CLOCKS_PER_SEC;
 timedif=0;
 timedif=endt-startt;
 wait((dt-timedif));
 }
}

/* This "new USF WMRA" function SIMULATES the arm going from the ready position to the
parking position with ANIMATION. All angles are in Radians.
The parking position is assumed to be qi=[0;pi/2;0;pi;0;0;0] (Radians), the ready
position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]] (Radians).
ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 -
-> close the figures.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres & Punya A. Basnayaka%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "ready2park.h"
#include "ArmMotion.h"
#include "DH.h"
#include "q2T.h"
#include <time.h>
using namespace std;
using namespace math;

void WMRA_ready2park(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qiwc, Galil
&g){

Matrix zero(1,1);
zero.Null(1,1);

www.manaraa.com

124

Appendix A. (Continued)

if (ini==3){
 if (arm==1){
 try {
 WMRA_ARM_Motion(ini, 0, zero, 0, g);
 }
 catch (...) {
 cout << "Exception 1 occurred";
 }
 }
 if (vr==1){

/*try {
 WMRA_VR_Animation(ini, 0, 0);
 }
 catch (...) {
 cout << "Exception 2 occurred";
 }*/
 }
 if (ml==1){
 /*try {
 WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
 }
 catch (...) {
 cout << "Exception 3 occurred";
 }*/
 }
 return;
 }

 // Defining the used conditions:
 float qi2 [7]= {PI/2, PI/2, 0, PI/2, PI/2, PI/2, 0}; // Initial joint angles
(Parking Position).
 float qd2 [7]= {0, PI/2, 0, PI, 0, 0, 0}; // Final joint angles (Ready Position).
 Matrix qd(7,1), qi(7,1);
 float ts, dt, ddt;
 int n, j;
 for (j = 0 ; j < 7 ; j++) {
 qi(j,0)=qi2[j];
 qd(j,0)=qd2[j];
 }
 ts=20; // (5 or 10 or 20) Simulation time to move the arm from any position to
the ready position.
 n=100; // Number of time steps.
 dt=ts/n; // The time step to move the arm from any position to the ready
position.
 Matrix dq(1,1);
 dq=qd-qi;
 dq/=(0.5*n+5); // Joint angle change at every time step.

 FILE * fil;
 fil = fopen("Ready2park.txt","w");
 fprintf(fil," qi is: \n\n");
 int k;
 for (j=0;j<qi.RowNo();j++){
 for (k=0;k<qi.ColNo();k++){
 fprintf(fil," %4.2f ", qi(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," qd is: \n\n");
 for (j=0;j<qd.RowNo();j++){
 for (k=0;k<qd.ColNo();k++){
 fprintf(fil," %4.2f ", qd(j,k));
 }

www.manaraa.com

125

Appendix A. (Continued)

fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," ts is %4.2f ", ts);
 fprintf(fil," \n\n\n");
 fprintf(fil," n is %d ", n);
 fprintf(fil," \n\n\n");
 fprintf(fil," dt is %4.2f ", dt);
 fprintf(fil," \n\n\n");
 fprintf(fil," dq is: \n\n");
 for (j=0;j<dq.RowNo();j++){
 for (k=0;k<dq.ColNo();k++){
 fprintf(fil," %4.2f ", dq(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 // Initializing the physical Arm:
 if (arm==1){
 zero.Null(10,1);
 for (j = 0 ; j < 7 ; j++) {
 zero(j,0)=qi(j,0);
 }
 zero(7,0)=qiwc(0,0);
 zero(8,0)=qiwc(1,0);
 WMRA_ARM_Motion(ini, 2, zero, dt, g);
 ddt=0;
 }
 fprintf(fil," qi is: \n\n");
 for (j=0;j<qi.RowNo();j++){
 for (k=0;k<qi.ColNo();k++){
 fprintf(fil," %4.2f ", qi(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," qiwc is: \n\n");
 for (j=0;j<qiwc.RowNo();j++){
 for (k=0;k<qiwc.ColNo();k++){
 fprintf(fil," %4.2f ", qiwc(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 // Initializing Virtual Reality Animation:
 if (vr==1){
 /*zeros.Null(9,1);
 for (j = 0 ; j < 7 ; j++) {
 zeros(j,0)=qi(j,0);
 }
 zeros(7,0)=qiwc(0,0);
 zeros(8,0)=qiwc(1,0);*/
 // WMRA_VR_Animation(ini, Tiwc, qi);
 }
 // Initializing Robot Animation in Matlab Graphics:
 Matrix DH(1,1);
 Matrix T01(4,4), T12(4,4), T23(4,4), T34(4,4), T45(4,4), T56(4,4), T67(4,4);
 Matrix Ti(4,4), Td(4,4);
 if (ml==1){
 // Inputting the D-H Parameters in a Matrix form:
 DH=WMRA_DH(qi);

 // Calculating the transformation matrices of each link:
 T01 =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2));

www.manaraa.com

126

Appendix A. (Continued)

//T2
 T12 =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2));
 //T3
 T23 =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2));
 //T4
 T34 =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2));
 //T5

T45=
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2));
 //T6
 T56 =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2));
 //T7
 T67 =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2));
 // Calculating the Transformation Matrix of the initial and desired arm
positions:
 Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67;
 Td=Tiwc*WMRA_q2T(qd);
 //WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67);
 }

 // Initialization:
 Matrix qo(1,1);
 float tt;
 qo=qi;
 tt=0;

 fprintf(fil," qo is: \n\n");
 for (j=0;j<qo.RowNo();j++){
 for (k=0;k<qo.ColNo();k++){
 fprintf(fil," %4.2f ", qo(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," tt is %4.2f ", tt);
 fprintf(fil," \n\n\n");

 Matrix qn(1,1);
 clock_t startt, endt, endf;
 double timedif;
 Matrix T1a(1,1), T2a(1,1), T3a(1,1), T4a(1,1), T5a(1,1), T6a(1,1), T7a(1,1);

 qn.Null(7,1);
 while (tt <= ts) {
 // Starting a timer:
 startt=0;
 startt=clock()/ CLOCKS_PER_SEC;

 // Calculating the new Joint Angles:

 if (tt==0){
 qn=qo;
 }
 else if (tt < (dt*(0.5*n-5))){
 for (j=1;j<7;j++){
 qn(j,0)=qo(j,0)+dq(j,0);

www.manaraa.com

127

Appendix A. (Continued)

}
 }
 else if (tt < (dt*(0.5*n+5))){
 qn=qo+dq;
 }
 else if (tt < (dt*(n-1))){
 qn(0,0)=qo(0,0)+dq(0,0);
 }

 fprintf(fil," qn is: \n\n");
 for (j=0;j<qn.RowNo();j++){
 for (k=0;k<qn.ColNo();k++){
 fprintf(fil," %4.2f ", qn(j,k));
 }
 fprintf(fil," \n");

}
 fprintf(fil," \n\n\n");
 fprintf(fil," ddt is %4.2f ", ddt);
 fprintf(fil," \n\n\n");

 // Updating the physical Arm:
 if (arm==1) {
 float ddt2=0;
 ddt2=ddt+dt;
 if (ddt>=0.5 || tt>=ts){
 zero.Null(10,1);
 for (j = 0 ; j < 7 ; j++) {
 zero(j,0)=qn(j,0);
 }
 zero(7,0)=qiwc(0,0);
 zero(8,0)=qiwc(1,0);
 WMRA_ARM_Motion(2, 1, zero, ddt2, g);
 ddt2=0;
 }
 ddt=0;
 ddt=ddt2;
 }

 // Updating Virtual Reality Animation:
 if (vr==1){
 /*zero.Null(9,1);
 for (j = 0 ; j < 7 ; j++) {
 zero(j,0)=qn(j,0);
 }
 zero(7,0)=qiwc(0,0);
 zero(8,0)=qiwc(1,0);*/
 //WMRA_VR_Animation(2, Tiwc, zero);
 }

 // Updating Matlab Animation:
 if (ml==1){
 // Calculating the new Transformation Matrix:
 T1a =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(qn(0,0))*WMRA_transl(0,0,DH(0,2));
 //T2
 T2a =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(qn(1,0))*WMRA_transl(0,0,DH(1,2));
 //T3
 T3a =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(qn(2,0))*WMRA_transl(0,0,DH(2,2));
 //T4

www.manaraa.com

128

Appendix A. (Continued)

T4a =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(qn(3,0))*WMRA_transl(0,0,DH(
3,2));

 //T5
 T5a =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(qn(4,0))*WMRA_transl(0,0,DH(4,2));
 //T6
 T6a =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(qn(5,0))*WMRA_transl(0,0,DH(5,2));
 //T7
 T7a =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(qn(6,0))*WMRA_transl(0,0,DH(6,2));

 //WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a);
 }
 // Updating the old values with the new values for the next iteration:
 qo.Null(7,1);
 qo=qn;
 tt=tt+dt;

fprintf(fil," qo is: \n\n");
 for (j=0;j<qo.RowNo();j++){
 for (k=0;k<qo.ColNo();k++){
 fprintf(fil," %4.2f ", qo(j,k));
 }
 fprintf(fil," \n");
 }
 fprintf(fil," \n\n\n");
 fprintf(fil," tt is %4.2f ", tt);
 fprintf(fil," \n\n\n");
 // Pausing for the speed sync:
 endt=0;
 endt=clock()/ CLOCKS_PER_SEC;
 timedif=0;
 timedif=endt-startt;
 wait((dt-timedif));
 }
 fclose(fil);
}

/* This function gives the homogeneous transformation matrix, given the rotation angle
about the X axis.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "Rotx.h"
using namespace std;
using namespace math;

Matrix WMRA_rotx(float t){

 Matrix T(4,4);

 float c, s;
 c=cos(t);

www.manaraa.com

129

Appendix A. (Continued)

s=sin(t);
 T.Unit(4);
 T(1,1)= c;
 T(1,2)= -s;
 T(2,1)= s;
 T(2,2)= c;

 return T;
}

/* This function gives the homogeneous transformation matrix, given the rotation angle
about the Y axis.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "Roty.h"
using namespace std;
using namespace math;

Matrix WMRA_roty(float t){

 Matrix T(4,4);

 float c, s;
 c=cos(t);
 s=sin(t);
 T.Unit(4);
 T(0,0)= c;
 T(0,2)= s;
 T(2,0)= -s;
 T(2,2)= c;

 return T;
}

/* This function gives the homogeneous transformation matrix, given the rotation angle
about the Z axis.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "Rotz.h"
using namespace std;
using namespace math;

Matrix WMRA_rotz(float t){

www.manaraa.com

130

Appendix A. (Continued)

 Matrix T(4,4);

 float c, s;
 c=cos(t);
 s=sin(t);
 T.Unit(4);
 T(0,0)= c;
 T(0,1)= -s;
 T(1,0)= s;
 T(1,1)= c;

 return T;

}

/* This function returns the sign of a variable.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Developed By: Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%
%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
#include <iostream>
#include <math.h>
#include "sign.h"
using namespace std;

int sign(float x){
 int y;
 if (x>0){
 y=1;
 }
 else if (x==0){
 y=0;
 }
 else {
 y=-1;
 }
 return y;
}
/* This function gives the Roll, Pitch, Taw angles, given the transformation matrix.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "T2rpy.h"
using namespace std;
using namespace math;

Matrix WMRA_T2rpy(Matrix T){

 Matrix rpy(3,1);
 rpy.Null(3,1);
 float c, s;

 //Making sure there is no singularity:

www.manaraa.com

131

Appendix A. (Continued)

if (abs(T(0,0))<EPS && abs(T(1,0))<EPS){
 rpy(0,0)=0;
 rpy(1,0)=atan2(-T(2,0), T(0,0));
 rpy(2,0)=atan2(-T(1,2), T(1,1));
 }
 else{
 rpy(0,0)=atan2(T(1,0), T(0,0));
 s=sin(rpy(0,0));
 c=cos(rpy(0,0));
 rpy(1,0)=atan2(-T(2,0), c*T(0,0)+s*T(1,0));
 rpy(2,0)=atan2(s*T(0,2)-c*T(1,2), c*T(1,1)-s*T(0,1));
 }

 return rpy;
}

/* This function is for getting the transformations of the USF WMRA with 9 DOF.
q is for the 7 joints in radians, and dq is for the wheelchair only in millimeters and
radians.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "DH.h"
#include "Rotx.h"
#include "Rotz.h"
#include "Transl.h"
#include "w2T.h"
#include "Tall.h"
using namespace std;
using namespace math;

void WMRA_Tall(int i, Matrix q, Matrix dq, Matrix Twc, Matrix& T, Matrix& Ta, Matrix&
Twco, Matrix& T1, Matrix& T2, Matrix& T3, Matrix& T4, Matrix& T5, Matrix& T6, Matrix&
T7){

 // Inputting the D-H Parameters in a Matrix form:
 extern Matrix DH;

 if (i==1){
 DH=WMRA_DH(q);
 //Calculating the transformation matrices of each link:
 //T1
 T1 =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2));
 //T2
 T2 =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2));
 //T3
 T3 =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2));
 //T4
 T4 =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2));
 //T5

www.manaraa.com

132

Appendix A. (Continued)

T5 =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(
4,2));

 //T6
 T6 =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2));
 //T7
 T7 =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2));

 //Calculating the Transformation Matrix of the initial arm position:

 Ta=T1*T2*T3*T4*T5*T6*T7;

 //Calculating the Transformation Matrix of the initial WMRA system
position:
 Twco=Twc;
 T=Twc*Ta;
 }

else{

 //T1
 T1 =
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(q(0,0))*WMRA_transl(0,0,DH(0,2));
 //T2
 T2 =
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(q(1,0))*WMRA_transl(0,0,DH(1,2));
 //T3
 T3 =
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(q(2,0))*WMRA_transl(0,0,DH(2,2));
 //T4
 T4 =
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(q(3,0))*WMRA_transl(0,0,DH(3,2));
 //T5
 T5 =
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(q(4,0))*WMRA_transl(0,0,DH(4,2));
 //T6
 T6 =
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(q(5,0))*WMRA_transl(0,0,DH(5,2));
 //T7
 T7 =
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(q(6,0))*WMRA_transl(0,0,DH(6,2));

 //Calculating the Transformation Matrix of the initial arm position:

 Ta=T1*T2*T3*T4*T5*T6*T7;
 Twc = WMRA_w2T(1, Twc, dq);
 Twco=Twc;
 T=Twc*Ta;
 }
}

www.manaraa.com

133

Appendix A. (Continued)

/* This function finds the trajectory points along a streight line, given the initial and
final transformations. Single-angle rotation about a single axis is used
See Eqs. 1.73-1.103 pages 30-32 of Richard Paul's book " Robot Manipulators"
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/
#include "matrix.h"
#include "vector.h"
#include "Polynomial.h"
#include "Linear.h"
#include "BPolynomial.h"
#include "sign.h"
#include "Traj.h"
using namespace std;
using namespace math;

float ***WMRA_traj(int ind, Matrix Ti, Matrix Td, int n){

 float ***Tt;

 //Finding the rotation of the desired point based on the initial point:
 Matrix R(3,3), Titemp(3,3),Tdtemp(3,3);
 int i,j,m;
 for (i=0 ; i < 3 ; i++) {
 for (j = 0 ; j < 3 ; j++) {
 Titemp(i,j)=Ti(i,j);

Tdtemp(i,j)=Td(i,j);
 }
 }
 Titemp=~Titemp;
 R=Titemp*Tdtemp;

 //Initial single-angle representation of the rotation:
 float a, s, c, v;
 a=atan2(sqrt(pow((R(2,1)-R(1,2)),2)+pow((R(0,2)-R(2,0)),2)+pow((R(1,0)-
R(0,1)),2)),(R(0,0)+R(1,1)+R(2,2)-1));
 s=sin(a);
 c=cos(a);
 v=1-c;

 //Finding the single-vector components for the rotation:
 float kx, ky, kz;
 if (a<0.001){
 kx=1;
 ky=0;
 kz=0;
 }
 else if (a<PI/2+0.001){
 kx=(R(2,1)-R(1,2))/(2*s);
 ky=(R(0,2)-R(2,0))/(2*s);
 kz=(R(1,0)-R(0,1))/(2*s);
 }
 else {
 kx=sign((R(2,1)-R(1,2)))*sqrt((R(0,0)-c)/v);
 ky=sign((R(0,2)-R(2,0)))*sqrt((R(1,1)-c)/v);
 kz=sign((R(1,0)-R(0,1)))*sqrt((R(2,2)-c)/v);
 if (kx>ky && kx>kz){

www.manaraa.com

134

Appendix A. (Continued)

 ky=(R(1,0)+R(0,1))/(2*kx*v);
 kz=(R(0,2)+R(2,0))/(2*kx*v);
 }
 else if (ky>kx && ky>kz){
 kx=(R(1,0)+R(0,1))/(2*ky*v);
 kz=(R(2,1)+R(1,2))/(2*ky*v);
 }
 else {
 kx=(R(0,2)+R(2,0))/(2*kz*v);
 ky=(R(2,1)+R(1,2))/(2*kz*v);
 }
 }

 // Running the desired trajectory method:
 // 1 == Polynomial with Blending function,
 // 2 == Polynomial without Blending function,
 // 3 == Linear function.
 Matrix at(n,1), xt(n,1), yt(n,1), zt(n,1);
 Titemp=~Titemp;
 if (ind == 2){
 at=WMRA_Polynomial(0,a,n);
 xt=WMRA_Polynomial(Ti(0,3), Td(0,3), n);
 yt=WMRA_Polynomial(Ti(1,3), Td(1,3), n);
 zt=WMRA_Polynomial(Ti(2,3), Td(2,3), n);
 }
 else if (ind == 3) {
 at=WMRA_Linear(0,a,n);
 xt=WMRA_Linear(Ti(0,3), Td(0,3), n);
 yt=WMRA_Linear(Ti(1,3), Td(1,3), n);
 zt=WMRA_Linear(Ti(2,3), Td(2,3), n);
 }
 else {
 at=WMRA_BPolynomial(0,a,n);
 xt=WMRA_BPolynomial(Ti(0,3), Td(0,3), n);
 yt=WMRA_BPolynomial(Ti(1,3), Td(1,3), n);

zt=WMRA_BPolynomial(Ti(2,3), Td(2,3), n);
 }

 Tt = new float**[n];
 for (i = 0; i < n; ++i) {
 Tt[i] = new float*[4];
 for (j = 0; j < 4; ++j){
 Tt[i][j] = new float[4];
 }
 }
 for (i=0 ; i < 4 ; i++) {
 for (j = 0 ; j < 4 ; j++) {
 Tt[0][i][j]=Ti(i,j);
 }
 }

 for (i=1; i<n; i++){
 // Single-angle Change:
 float da;
 da=at(i,0)-at(0,0);
 s=sin(da);
 c=cos(da);
 v=1-c;
 // Rotation and Position Change:

 Matrix dR(3,3);
 dR(0,0)=pow(kx,2)*v+c;

www.manaraa.com

135

Appendix A. (Continued)

dR(0,1)=kx*ky*v-kz*s;
 dR(0,2)=kx*kz*v+ky*s;
 dR(1,0)=kx*ky*v+kz*s;
 dR(1,1)=pow(ky,2)*v+c;
 dR(1,2)=ky*kz*v-kx*s;
 dR(2,0)=kx*kz*v-ky*s;
 dR(2,1)=ky*kz*v+kx*s;
 dR(2,2)=pow(kz,2)*v+c;

 //Finding the trajectory points along the trajectory line:
 Matrix Tti1(3,3),Tti(4,4);
 Tti1 = Titemp * dR;
 Tti.Unit(4);
 for (m=0 ; m < 3 ; m++) {
 for (j = 0 ; j < 3 ; j++) {
 Tti(m,j)=Tti1(m,j);
 }
 }
 Tti(0,3)=xt(i,0);
 Tti(1,3)=yt(i,0);
 Tti(2,3)=zt(i,0);

 for (m=0 ; m < 4 ; m++) {
 for (j = 0 ; j < 4 ; j++) {
 Tt[i][m][j]=Tti(m,j);
 }
 }
 }

 return Tt;

}

/* This function gives the homogeneous transformation matrix, given the X, Y, Z cartesian
translation values.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "Transl.h"
using namespace std;
using namespace math;

Matrix WMRA_transl(float x, float y, float z){

 Matrix T(4,4);

 T.Unit(4);
 T(0,3)= x;
 T(1,3)= y;
 T(2,3)= z;

 return T;
}

www.manaraa.com

136

Appendix A. (Continued)

 * vector.cpp
 *
 * Created on: Aug 28, 2009
 *%%%%% Developed by: Garret Pence%%%%%%%%%%
 */

#include <iostream>
#include "vector.h"

using namespace std;

vector::vector()
{
 x = 0;
 y = 0;
 z = 0;
}

vector::vector(double m, double n, double o)
{
 x = m;
 y = n;
 z = o;
}

vector crossProduct(vector a, vector b)
{
 double i, j, k;
 vector c;

 i = (a.y * b.z - a.z * b.y);
 j = (a.x * b.z - a.z * b.x) * -1;
 k = (a.x * b.y - a.y * b.x);

 c.x = i;
 c.y = j;

c.z = k;

 return c;

}

/* This function gives the Transformation Matrix of the wheelchair with 2 DOF (Ground to
WMRA base), given the previous transformation matrix and the required wheelchair's travel
distance and angle.
Dimentions are as supplies, angles are in radians.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "vector.h"
#include "WCD.h"
#include "w2T.h"
using namespace std;
using namespace math;

Matrix WMRA_w2T(int ind, Matrix Tp, Matrix q){

 Matrix T(4,4);

www.manaraa.com

137

Appendix A. (Continued)

Matrix L(1,1);
 // Reading the Wheelchair's constant dimentions, all dimentions are converted in
millimeters:
 L=WMRA_WCD();
 // Deciding if the motion is in reference to the arm base (1) or the wheel axle
center (0):
 int i;
 if (ind==0){
 for (i=1; i<4; i++){
 L(0,i) = 0;
 }
 }

 // Defining the inverse of Transformation Matrix between the wheelchair center and
the WMRA's base:
 Matrix Twa(4,4), Twainv(4,4);
 Twa.Unit(4);
 for (i=0; i<3; i++){
 Twa(i,3) = L(0,i+1);
 }

 // The previous transformation matrix from the ground to the wheelchair center:
 Twainv = !Twa;
 Tp = Tp * Twainv;

 // Defining the Transformation Matrix between the ground and the wheelchair center
and WMRA's base:
 if (abs(q(1,0))<=EPS){ // Streight line motion.
 for (i=0; i<2; i++){
 Tp(i,3)= Tp(i,3) + q(0,0)*Tp(i,0);
 }
 T = Tp * Twa;
 }
 else {
 float po, p, r;
 po=atan2(Tp(1,0),Tp(0,0));
 p=q(1,0);
 r=q(0,0)/p-L(0,0)/2;

Matrix Tgw(4,4);
 Tgw.Unit(4);
 Tgw(0,0)= cos(po+p);
 Tgw(0,1)= -sin(po+p);
 Tgw(0,3)= Tp(0,3)+sin(PI/2+po+p/2)*(r+L(0,0)/2)*sin(p)/cos(p/2);
 Tgw(1,0)= sin(po+p);
 Tgw(1,1)= cos(po+p);
 Tgw(1,3)= Tp(1,3)-cos(PI/2+po+p/2)*(r+L(0,0)/2)*sin(p)/cos(p/2);
 Tgw(2,3)= Tp(2,3);

 T= Tgw * Twa;
 }

 return T;
}

www.manaraa.com

138

Appendix A. (Continued)

/* This function gives the wheelchair dimentions matrix to be used in the program.
Modifying the dimentons on this file is sufficient to change these dimention in all
related programs.

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%

Function Declaration:*/

#include "matrix.h"
#include "WCD.h"
using namespace std;
using namespace math;

Matrix WMRA_WCD(){

 Matrix L(1,5);
 int Ltemp[5] = {500,400,230,200,170};
 int i;
 for (i=0; i < 5; i++){
 L(0,i) = Ltemp[i];
 }

 // All dimentions are in millimeters.
 //L(0,0)=560; // Distance between the two driving wheels.
 //L(0,1)=440; // Horizontal distance between the wheels axix of rotation and the
arm mounting position (along x).
 //L(0,2)=230; // Horizontal distance between the middle point between the two
driving wheels and the arm mounting position (along y).
 //L(0,3)=182; // Vertical distance between the wheels axix of rotation and the
arm mounting position (along z).
 //L(0,4)=168; // Radius of the driving wheels.

 return L;
}

www.manaraa.com

139

Appendix B. C++ Touch-Screen GUI Program

%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Developed By: Punya A. Basnayaka & Ana Catalina Torres%%%%%
%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
#pragma once

double VAR_DX[7]={0.0};

double varscreenopn;

using namespace System;
using namespace System::ComponentModel;
using namespace System::Collections;
using namespace System::Windows::Forms;
using namespace System::Data;
using namespace System::Drawing;

namespace Touch {

 /// <summary>
 /// Summary for Form1
 ///
 /// WARNING: If you change the name of this class, you will need to change the
 /// 'Resource File Name' property for the managed resource compiler tool
 /// associated with all .resx files this class depends on. Otherwise,
 /// the designers will not be able to interact properly with localized
 /// resources associated with this form.
 /// </summary>
 public ref class Form1 : public System::Windows::Forms::Form
 {
 public:
 Form1(void)
 {
 InitializeComponent();
 //
 //TODO: Add the constructor code here
 //
 }

 protected:
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 ~Form1()
 {
 if (components)
 {
 delete components;
 }
 }

 protected:

 private: System::Windows::Forms::GroupBox^ groupBox3;
 private: System::Windows::Forms::Button^ button3;

 private: System::Windows::Forms::GroupBox^ groupBox2;
 private: System::Windows::Forms::GroupBox^ groupBox1;
 private: System::Windows::Forms::CheckBox^ checkBox1;

 private: System::Windows::Forms::Button^ button4;
 private: System::Windows::Forms::Button^ button2;
 private: System::Windows::Forms::Button^ button1;

www.manaraa.com

140

Appendix B. (Continued)

private: System::Windows::Forms::CheckBox^ checkBox6;
 private: System::Windows::Forms::CheckBox^ checkBox5;

private: System::Windows::Forms::CheckBox^ checkBox4;
 private: System::Windows::Forms::CheckBox^ checkBox3;
 private: System::Windows::Forms::CheckBox^ checkBox2;
 private: System::Windows::Forms::CheckBox^ checkBox14;
 private: System::Windows::Forms::CheckBox^ checkBox13;
 private: System::Windows::Forms::CheckBox^ checkBox12;
 private: System::Windows::Forms::CheckBox^ checkBox11;
 private: System::Windows::Forms::CheckBox^ checkBox10;
 private: System::Windows::Forms::CheckBox^ checkBox9;
 private: System::Windows::Forms::CheckBox^ checkBox8;
 private: System::Windows::Forms::CheckBox^ checkBox7;

 private:
 /// <summary>
 /// Required designer variable.
 /// </summary>
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 System::ComponentModel::ComponentResourceManager^ resources =
(gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid));
 this->groupBox3 = (gcnew System::Windows::Forms::GroupBox());
 this->checkBox14 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox13 = (gcnew System::Windows::Forms::CheckBox());
 this->button3 = (gcnew System::Windows::Forms::Button());
 this->groupBox2 = (gcnew System::Windows::Forms::GroupBox());
 this->checkBox12 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox11 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox10 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox9 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox8 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox7 = (gcnew System::Windows::Forms::CheckBox());
 this->groupBox1 = (gcnew System::Windows::Forms::GroupBox());
 this->checkBox6 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox5 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox4 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox3 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox2 = (gcnew System::Windows::Forms::CheckBox());
 this->checkBox1 = (gcnew System::Windows::Forms::CheckBox());
 this->button4 = (gcnew System::Windows::Forms::Button());
 this->button2 = (gcnew System::Windows::Forms::Button());
 this->button1 = (gcnew System::Windows::Forms::Button());
 this->groupBox3->SuspendLayout();
 this->groupBox2->SuspendLayout();
 this->groupBox1->SuspendLayout();
 this->SuspendLayout();
 //
 // groupBox3
 //
 this->groupBox3->Controls->Add(this->checkBox14);
 this->groupBox3->Controls->Add(this->checkBox13);
 this->groupBox3->Controls->Add(this->button3);
 this->groupBox3->Location = System::Drawing::Point(237, 232);
 this->groupBox3->Name = L"groupBox3";
 this->groupBox3->Size = System::Drawing::Size(289, 111);
 this->groupBox3->TabIndex = 9;
 this->groupBox3->TabStop = false;

www.manaraa.com

141

Appendix B. (Continued)

this->checkBox14->Appearance =
System::Windows::Forms::Appearance::Button;

 this->checkBox14->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox14.BackgroundImage")));
 this->checkBox14->Location = System::Drawing::Point(201, 22);
 this->checkBox14->Name = L"checkBox14";
 this->checkBox14->Size = System::Drawing::Size(68, 69);
 this->checkBox14->TabIndex = 1;
 this->checkBox14->UseVisualStyleBackColor = true;
 this->checkBox14->CheckedChanged += gcnew
System::EventHandler(this, &Form1::checkBox14_CheckedChanged);
 //
 // checkBox13
 //
 this->checkBox13->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox13->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox13.BackgroundImage")));
 this->checkBox13->Location = System::Drawing::Point(111, 22);
 this->checkBox13->Name = L"checkBox13";
 this->checkBox13->Size = System::Drawing::Size(68, 69);
 this->checkBox13->TabIndex = 1;
 this->checkBox13->UseVisualStyleBackColor = true;
 this->checkBox13->CheckedChanged += gcnew
System::EventHandler(this, &Form1::checkBox13_CheckedChanged);
 //
 // button3
 //
 this->button3->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"button3.BackgroundImage")));
 this->button3->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::Zoom;
 this->button3->Location = System::Drawing::Point(22, 22);
 this->button3->Name = L"button3";
 this->button3->Size = System::Drawing::Size(68, 69);
 this->button3->TabIndex = 0;
 this->button3->UseVisualStyleBackColor = true;
 this->button3->Click += gcnew System::EventHandler(this,
&Form1::button3_Click);
 //
 // groupBox2
 //
 this->groupBox2->Controls->Add(this->checkBox12);
 this->groupBox2->Controls->Add(this->checkBox11);
 this->groupBox2->Controls->Add(this->checkBox10);
 this->groupBox2->Controls->Add(this->checkBox9);
 this->groupBox2->Controls->Add(this->checkBox8);
 this->groupBox2->Controls->Add(this->checkBox7);
 this->groupBox2->Location = System::Drawing::Point(237, 13);
 this->groupBox2->Name = L"groupBox2";
 this->groupBox2->Size = System::Drawing::Size(289, 213);
 this->groupBox2->TabIndex = 8;
 this->groupBox2->TabStop = false;
 this->groupBox2->Text = L"Gripper Orientation";
 //
 // checkBox12
 //
 this->checkBox12->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox12->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox12.BackgroundImage")));

www.manaraa.com

142

Appendix B. (Continued)

this->checkBox12->Location = System::Drawing::Point(201, 127);
 this->checkBox12->Name = L"checkBox12";
 this->checkBox12->Size = System::Drawing::Size(68, 69);
 this->checkBox12->TabIndex = 1;
 this->checkBox12->UseVisualStyleBackColor = true;
 this->checkBox12->CheckedChanged += gcnew
System::EventHandler(this, &Form1::checkBox12_CheckedChanged);
 //
 // checkBox11
 //
 this->checkBox11->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox11->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox11.BackgroundImage")));
 this->checkBox11->Location = System::Drawing::Point(111, 127);
 this->checkBox11->Name = L"checkBox11";
 this->checkBox11->Size = System::Drawing::Size(68, 69);
 this->checkBox11->TabIndex = 1;
 this->checkBox11->UseVisualStyleBackColor = true;
 this->checkBox11->CheckedChanged += gcnew
System::EventHandler(this, &Form1::checkBox11_CheckedChanged);
 //
 // checkBox10
 //
 this->checkBox10->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox10->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox10.BackgroundImage")));
 this->checkBox10->Location = System::Drawing::Point(22, 127);
 this->checkBox10->Name = L"checkBox10";
 this->checkBox10->Size = System::Drawing::Size(68, 69);
 this->checkBox10->TabIndex = 1;
 this->checkBox10->UseVisualStyleBackColor = true;
 this->checkBox10->CheckedChanged += gcnew
System::EventHandler(this, &Form1::checkBox10_CheckedChanged);
 //
 // checkBox9
 //
 this->checkBox9->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox9->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox9.BackgroundImage")));
 this->checkBox9->Location = System::Drawing::Point(201, 19);
 this->checkBox9->Name = L"checkBox9";
 this->checkBox9->Size = System::Drawing::Size(68, 69);
 this->checkBox9->TabIndex = 1;
 this->checkBox9->UseVisualStyleBackColor = true;
 this->checkBox9->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox9_CheckedChanged);
 //
 // checkBox8
 //
 this->checkBox8->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox8->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox8.BackgroundImage")));
 this->checkBox8->Location = System::Drawing::Point(111, 19);
 this->checkBox8->Name = L"checkBox8";
 this->checkBox8->Size = System::Drawing::Size(68, 69);
 this->checkBox8->TabIndex = 1;
 this->checkBox8->UseVisualStyleBackColor = true;

www.manaraa.com

143

Appendix B. (Continued)

this->checkBox8->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox8_CheckedChanged);

 //
 // checkBox7

 //
 this->checkBox7->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox7->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox7.BackgroundImage")));
 this->checkBox7->Location = System::Drawing::Point(22, 19);
 this->checkBox7->Name = L"checkBox7";
 this->checkBox7->Size = System::Drawing::Size(68, 69);
 this->checkBox7->TabIndex = 1;
 this->checkBox7->UseVisualStyleBackColor = true;
 this->checkBox7->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox7_CheckedChanged);
 //
 // groupBox1
 //
 this->groupBox1->Controls->Add(this->checkBox6);
 this->groupBox1->Controls->Add(this->checkBox5);
 this->groupBox1->Controls->Add(this->checkBox4);
 this->groupBox1->Controls->Add(this->checkBox3);
 this->groupBox1->Controls->Add(this->checkBox2);
 this->groupBox1->Controls->Add(this->checkBox1);
 this->groupBox1->Location = System::Drawing::Point(12, 13);
 this->groupBox1->Name = L"groupBox1";
 this->groupBox1->Size = System::Drawing::Size(206, 330);
 this->groupBox1->TabIndex = 7;
 this->groupBox1->TabStop = false;
 this->groupBox1->Text = L"Gripper Possition";
 //
 // checkBox6
 //
 this->checkBox6->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox6->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox6.BackgroundImage")));
 this->checkBox6->Location = System::Drawing::Point(114, 241);
 this->checkBox6->Name = L"checkBox6";
 this->checkBox6->Size = System::Drawing::Size(68, 69);
 this->checkBox6->TabIndex = 1;
 this->checkBox6->UseVisualStyleBackColor = true;
 this->checkBox6->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox6_CheckedChanged);
 //
 // checkBox5
 //
 this->checkBox5->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox5->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox5.BackgroundImage")));
 this->checkBox5->Location = System::Drawing::Point(25, 241);
 this->checkBox5->Name = L"checkBox5";
 this->checkBox5->Size = System::Drawing::Size(68, 69);
 this->checkBox5->TabIndex = 1;
 this->checkBox5->UseVisualStyleBackColor = true;
 this->checkBox5->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox5_CheckedChanged);
 //
 // checkBox4

www.manaraa.com

144

Appendix B. (Continued)

 this->checkBox4->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox4->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox4.BackgroundImage")));
 this->checkBox4->Location = System::Drawing::Point(114, 127);

this->checkBox4->Name = L"checkBox4";
 this->checkBox4->Size = System::Drawing::Size(68, 69);
 this->checkBox4->TabIndex = 1;
 this->checkBox4->UseVisualStyleBackColor = true;
 this->checkBox4->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox4_CheckedChanged);
 //
 // checkBox3
 //
 this->checkBox3->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox3->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox3.BackgroundImage")));
 this->checkBox3->Location = System::Drawing::Point(25, 127);
 this->checkBox3->Name = L"checkBox3";
 this->checkBox3->Size = System::Drawing::Size(68, 69);
 this->checkBox3->TabIndex = 1;
 this->checkBox3->UseVisualStyleBackColor = true;
 this->checkBox3->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox3_CheckedChanged);
 //
 // checkBox2
 //
 this->checkBox2->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox2->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox2.BackgroundImage")));
 this->checkBox2->Location = System::Drawing::Point(114, 19);
 this->checkBox2->Name = L"checkBox2";
 this->checkBox2->Size = System::Drawing::Size(68, 69);
 this->checkBox2->TabIndex = 1;
 this->checkBox2->UseVisualStyleBackColor = true;
 this->checkBox2->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox2_CheckedChanged);
 //
 // checkBox1
 //
 this->checkBox1->Appearance =
System::Windows::Forms::Appearance::Button;
 this->checkBox1->BackgroundImage =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"checkBox1.BackgroundImage")));
 this->checkBox1->Location = System::Drawing::Point(25, 19);
 this->checkBox1->Name = L"checkBox1";
 this->checkBox1->Size = System::Drawing::Size(68, 69);
 this->checkBox1->TabIndex = 1;
 this->checkBox1->UseVisualStyleBackColor = true;
 this->checkBox1->CheckedChanged += gcnew System::EventHandler(this,
&Form1::checkBox1_CheckedChanged);
 //
 // button4
 //
 this->button4->Font = (gcnew System::Drawing::Font(L"Microsoft Sans
Serif", 10, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point,
 static_cast<System::Byte>(0)));

www.manaraa.com

145

Appendix B. (Continued)

this->button4->Location = System::Drawing::Point(351, 357);
 this->button4->Name = L"button4";
 this->button4->Size = System::Drawing::Size(75, 30);
 this->button4->TabIndex = 5;
 this->button4->Text = L"Run";
 this->button4->UseVisualStyleBackColor = true;
 this->button4->Click += gcnew System::EventHandler(this,
&Form1::button4_Click);
 //
 // button2

 //
 this->button2->Enabled = false;
 this->button2->Font = (gcnew System::Drawing::Font(L"Microsoft Sans
Serif", 10, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point,
 static_cast<System::Byte>(0)));
 this->button2->Location = System::Drawing::Point(12, 357);
 this->button2->Name = L"button2";
 this->button2->Size = System::Drawing::Size(78, 30);
 this->button2->TabIndex = 6;
 this->button2->Text = L"Back";
 this->button2->UseVisualStyleBackColor = true;
 //
 // button1
 //
 this->button1->Font = (gcnew System::Drawing::Font(L"Microsoft Sans
Serif", 10, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point,
 static_cast<System::Byte>(0)));
 this->button1->Location = System::Drawing::Point(451, 357);
 this->button1->Name = L"button1";
 this->button1->Size = System::Drawing::Size(75, 30);
 this->button1->TabIndex = 5;
 this->button1->Text = L"Exit";
 this->button1->UseVisualStyleBackColor = true;
 this->button1->Click += gcnew System::EventHandler(this,
&Form1::button1_Click);
 //
 // Form1
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(539, 401);
 this->ControlBox = false;
 this->Controls->Add(this->groupBox3);
 this->Controls->Add(this->groupBox2);
 this->Controls->Add(this->groupBox1);
 this->Controls->Add(this->button4);
 this->Controls->Add(this->button2);
 this->Controls->Add(this->button1);
 this->MaximizeBox = false;
 this->Name = L"Form1";
 this->Text = L"WMRA Screen";
 this->Load += gcnew System::EventHandler(this, &Form1::Form1_Load);
 this->groupBox3->ResumeLayout(false);
 this->groupBox2->ResumeLayout(false);
 this->groupBox1->ResumeLayout(false);
 this->ResumeLayout(false);

 }
#pragma endregion
 private: System::Void checkBox1_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox1->CheckState) {
 case CheckState::Checked:
 // Code for checked state.

www.manaraa.com

146

Appendix B. (Continued)

 this->checkBox1->FlatStyle = FlatStyle::Flat;
 this->checkBox1->FlatAppearance->BorderSize=2;
 this->checkBox1->FlatAppearance->BorderColor=Color::Red;
 this->checkBox5->Enabled=false;
 VAR_DX[2]=1;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox1->FlatStyle = FlatStyle::Standard;

 this->checkBox5->Enabled=true;
 VAR_DX[2]=0;
 break;

 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[2]=0;
 this->checkBox1->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox2_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox2->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox2->FlatStyle = FlatStyle::Flat;
 this->checkBox2->FlatAppearance->BorderSize=2;
 this->checkBox2->FlatAppearance->BorderColor=Color::Red;
 this->checkBox6->Enabled=false;
 VAR_DX[0]=1;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox2->FlatStyle = FlatStyle::Standard;

 this->checkBox6->Enabled=true;
 VAR_DX[0]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[0]=0;
 this->checkBox2->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox3_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox3->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox3->FlatStyle = FlatStyle::Flat;
 this->checkBox3->FlatAppearance->BorderSize=2;
 this->checkBox3->FlatAppearance->BorderColor=Color::Red;
 this->checkBox4->Enabled=false;
 VAR_DX[1]=1;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox3->FlatStyle = FlatStyle::Standard;

 this->checkBox4->Enabled=true;
 VAR_DX[1]=0;
 break;

www.manaraa.com

147

Appendix B. (Continued)

 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[1]=0;
 this->checkBox3->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox4_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox4->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox4->FlatStyle = FlatStyle::Flat;
 this->checkBox4->FlatAppearance->BorderSize=2;
 this->checkBox4->FlatAppearance->BorderColor=Color::Red;
 this->checkBox3->Enabled=false;
 VAR_DX[1]=-1;

 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox4->FlatStyle = FlatStyle::Standard;

 this->checkBox3->Enabled=true;
 VAR_DX[1]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[1]=0;
 this->checkBox4->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox5_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox5->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox5->FlatStyle = FlatStyle::Flat;
 this->checkBox5->FlatAppearance->BorderSize=2;
 this->checkBox5->FlatAppearance->BorderColor=Color::Red;
 this->checkBox1->Enabled=false;
 VAR_DX[2]=-1;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox5->FlatStyle = FlatStyle::Standard;

 this->checkBox1->Enabled=true;
 VAR_DX[2]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[2]=0;
 this->checkBox5->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox6_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox6->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox6->FlatStyle = FlatStyle::Flat;
 this->checkBox6->FlatAppearance->BorderSize=2;

www.manaraa.com

148

Appendix B. (Continued)

 this->checkBox2->Enabled=false;
 VAR_DX[0]=-1;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox6->FlatStyle = FlatStyle::Standard;

 this->checkBox2->Enabled=true;
 VAR_DX[0]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[0]=0;
 this->checkBox6->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox7_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {

 switch(checkBox7->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox7->FlatStyle = FlatStyle::Flat;
 this->checkBox7->FlatAppearance->BorderSize=2;
 this->checkBox7->FlatAppearance->BorderColor=Color::Red;
 this->checkBox9->Enabled=false;
 VAR_DX[5]=0.003;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox7->FlatStyle = FlatStyle::Standard;

 this->checkBox9->Enabled=true;
 VAR_DX[5]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[5]=0;
 this->checkBox7->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox8_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox8->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox8->FlatStyle = FlatStyle::Flat;
 this->checkBox8->FlatAppearance->BorderSize=2;
 this->checkBox8->FlatAppearance->BorderColor=Color::Red;
 this->checkBox11->Enabled=false;
 VAR_DX[4]=0.003;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox8->FlatStyle = FlatStyle::Standard;

 this->checkBox11->Enabled=true;
 VAR_DX[4]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[4]=0;

www.manaraa.com

149

Appendix B. (Continued)

 this->checkBox8->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox9_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox9->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox9->FlatStyle = FlatStyle::Flat;
 this->checkBox9->FlatAppearance->BorderSize=2;
 this->checkBox9->FlatAppearance->BorderColor=Color::Red;
 this->checkBox7->Enabled=false;
 VAR_DX[5]=-0.003;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox9->FlatStyle = FlatStyle::Standard;

 this->checkBox7->Enabled=true;
 VAR_DX[5]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[5]=0;
 this->checkBox9->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox10_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox10->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox10->FlatStyle = FlatStyle::Flat;
 this->checkBox10->FlatAppearance->BorderSize=2;
 this->checkBox10->FlatAppearance->BorderColor=Color::Red;
 this->checkBox12->Enabled=false;
 VAR_DX[3]=-0.003;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox10->FlatStyle = FlatStyle::Standard;

 this->checkBox12->Enabled=true;
 VAR_DX[3]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[3]=0;
 this->checkBox10->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox11_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox11->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox11->FlatStyle = FlatStyle::Flat;
 this->checkBox11->FlatAppearance->BorderSize=2;
 this->checkBox11->FlatAppearance->BorderColor=Color::Red;
 this->checkBox8->Enabled=false;
 VAR_DX[4]=-0.003;
 break;

www.manaraa.com

150

Appendix B. (Continued)

 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox11->FlatStyle = FlatStyle::Standard;

 this->checkBox8->Enabled=true;
 VAR_DX[4]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[4]=0;
 this->checkBox11->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox12_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox12->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox12->FlatStyle = FlatStyle::Flat;
 this->checkBox12->FlatAppearance->BorderSize=2;
 this->checkBox12->FlatAppearance->BorderColor=Color::Red;
 this->checkBox10->Enabled=false;
 VAR_DX[3]=0.003;
 break;

 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox12->FlatStyle = FlatStyle::Standard;

 this->checkBox10->Enabled=true;
 VAR_DX[3]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[3]=0;
 this->checkBox12->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void button3_Click(System::Object^ sender, System::EventArgs^ e) {
 VAR_DX[0]=0;
 VAR_DX[1]=0;
 VAR_DX[2]=0;
 VAR_DX[3]=0;
 VAR_DX[4]=0;
 VAR_DX[5]=0;
 VAR_DX[6]=0;
 varscreenopn=1;

 this->checkBox1->Enabled=true;
 this->checkBox2->Enabled=true;
 this->checkBox3->Enabled=true;
 this->checkBox4->Enabled=true;
 this->checkBox5->Enabled=true;
 this->checkBox6->Enabled=true;
 this->checkBox7->Enabled=true;
 this->checkBox8->Enabled=true;
 this->checkBox9->Enabled=true;
 this->checkBox10->Enabled=true;
 this->checkBox11->Enabled=true;
 this->checkBox12->Enabled=true;
 this->checkBox13->Enabled=true;

www.manaraa.com

151

Appendix B. (Continued)

 this->checkBox14->Enabled=true;
 this->checkBox1->Checked = false;
 this->checkBox2->Checked = false;
 this->checkBox3->Checked = false;
 this->checkBox4->Checked = false;
 this->checkBox5->Checked = false;
 this->checkBox6->Checked = false;
 this->checkBox7->Checked = false;
 this->checkBox8->Checked = false;
 this->checkBox9->Checked = false;
 this->checkBox10->Checked = false;
 this->checkBox11->Checked = false;
 this->checkBox12->Checked = false;
 this->checkBox13->Checked = false;
 this->checkBox14->Checked = false;
 FILE * fid;
 fid = fopen("outputtouch.txt","w");

fprintf(fid,"%1.f\t%1.f\t%1.f\t%1.3f\t%1.3f\t%1.3f\t%1.f\t%1.f\t\n",VAR_DX[0],VAR_DX[1],V
AR_DX[2],VAR_DX[3],VAR_DX[4],VAR_DX[5],VAR_DX[6],varscreenopn);
 fclose(fid);
 }
private: System::Void checkBox13_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox13->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox13->FlatStyle = FlatStyle::Flat;
 this->checkBox13->FlatAppearance->BorderSize=2;
 this->checkBox13->FlatAppearance->BorderColor=Color::Red;
 this->checkBox14->Enabled=false;
 VAR_DX[6]=-1;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox13->FlatStyle = FlatStyle::Standard;

 this->checkBox14->Enabled=true;
 VAR_DX[6]=0;
 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[6]=0;
 this->checkBox12->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
private: System::Void checkBox14_CheckedChanged(System::Object^ sender,
System::EventArgs^ e) {
 switch(checkBox14->CheckState) {
 case CheckState::Checked:
 // Code for checked state.
 this->checkBox14->FlatStyle = FlatStyle::Flat;
 this->checkBox14->FlatAppearance->BorderSize=2;
 this->checkBox14->FlatAppearance->BorderColor=Color::Red;
 this->checkBox13->Enabled=false;
 VAR_DX[6]=1;
 break;
 case CheckState::Unchecked:
 // Code for unchecked state.
 this->checkBox14->FlatStyle = FlatStyle::Standard;

 this->checkBox13->Enabled=true;
 VAR_DX[6]=0;

www.manaraa.com

152

Appendix B. (Continued)

 break;
 case CheckState::Indeterminate:
 // Code for indeterminate state.
 VAR_DX[6]=0;
 this->checkBox14->FlatStyle = FlatStyle::Standard;
 break;
 }
 }
public: System::Void button1_Click(System::Object^ sender, System::EventArgs^ e) {
 varscreenopn = 0;
 VAR_DX[0]=0;
 VAR_DX[1]=0;
 VAR_DX[2]=0;
 VAR_DX[3]=0;
 VAR_DX[4]=0;
 VAR_DX[5]=0;
 VAR_DX[6]=0;
 FILE * fid;
 fid = fopen("outputtouch.txt","w");

fprintf(fid,"%1.f\t%1.f\t%1.f\t%1.3f\t%1.3f\t%1.3f\t%1.f\t%1.f\t\n",VAR_DX[0],VAR_DX[1],V
AR_DX[2],VAR_DX[3],VAR_DX[4],VAR_DX[5],VAR_DX[6],varscreenopn);
 fclose(fid);
 Form1::Close();
 }
public: System::Void button4_Click(System::Object^ sender, System::EventArgs^ e) {
 varscreenopn = 1;
 FILE * fid;
 fid = fopen("outputtouch.txt","w");

fprintf(fid,"%1.f\t%1.f\t%1.f\t%1.3f\t%1.3f\t%1.3f\t%1.f\t%1.f\t\n",VAR_DX[0],VAR_DX[1],V
AR_DX[2],VAR_DX[3],VAR_DX[4],VAR_DX[5],VAR_DX[6],varscreenopn);

fclose(fid);
 // Form1::Hide();
 }
private: System::Void Form1_Load(System::Object^ sender, System::EventArgs^ e) {
 Form1::CenterToScreen();
 varscreenopn = 1.0;
 FILE * fid;
 fid = fopen("outputtouch.txt","w");

fprintf(fid,"%1.f\t%1.f\t%1.f\t%1.3f\t%1.3f\t%1.3f\t%1.f\t%1.f\t\n",VAR_DX[0],VAR_DX[1],V
AR_DX[2],VAR_DX[3],VAR_DX[4],VAR_DX[5],VAR_DX[6],varscreenopn);
 fclose(fid);

}*/
 }
};
}

www.manaraa.com

153

About the Author

Punya A. Basnayaka has obtained her Bachelor degree in Engineering and graduated

with honor from University of Pedadeniya, Sri Lanka in 2007. She was awarded the University

Prize (Bartholomeuesz Price) for Engineering Mathematics. Write after her graduation she joined

to the Department of Mechanical Engineering, University of Peradeniya, Sri Lanka as a lecturer.

In 2008, she was admitted to University of South Florida, Tampa, Florida for her Master’s

degree in Mechanical Engineering in the field of Rehabilitation Robotics. Since 2008 Fall she has

been working as a Teaching Assistant and Research Assistant at University of South Florida.

Punya is a student member of ASME. She completed her degree of Master of Science in

Mechanical Engineering, successfully in 2010.

	Low-Level Programming of a 9-Degree-of-Freedom Wheelchair-Mounted Robotic Arm with the Application of Different User Interfaces
	Scholar Commons Citation

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
Table 1: Interface Devices Matching with Body Functions [20]	15
Table 2: WMRA-I Specifications [26]	17
Table 3:
	List of Figures
	Abstract
	Chapter 1:
	Introduction
	1.1. Motivation
	1.2. Thesis Objectives
	1.3. Thesis Outline

	Chapter 2:
	Background
	2.1. Main Types of Rehabilitation Robots
	2.1.1. Workstation Robots
	2.1.2. Stand Alone Manipulators
	2.1.3. Wheelchair-Mounted Robotic Systems
	2.1.4. Mobile Robots

	2.2. Robot Programming Languages
	2.2.1. C++ Software Architecture of USF WMRA-I
	2.2.2. Matlab Software Architecture of USF WMRA-I

	2.3. Human Machine Interface
	2.4. Safety
	2.5. Overview of USF WMRA-I

	Chapter 3:
	Closed Loop Motion Control System of USF WMRA-II
	3.1. Introduction
	3.2. Motion Controller
	3.3. Motors
	3.4. Position Sensor (Encoder)
	3.5. Computer
	3.6. PID Feedback Controller
	3.6.1. Overview of Tuning Methods
	3.6.2. PID Tuning Software

	Denavit-Hartenberg Parameters and Hardware of USF WMRA-II
	4.1. Denavit-Hartenberg Rules
	4.2. DH Parameter Assignment for USF WMRA-II
	4.3. Hardware Architecture
	4.3.1. Power Wheelchair
	4.3.2. 7-DOF Robotic Arm
	4.3.3. Power Supply
	4.3.4. Controller Board

	Chapter 5:
	Calibration and Programming of USF WMRA-II
	5.1. Axis Calibration of WMRA-II
	5.2. Calculation of Velocity and Acceleration
	5.2.1. Position Control

	5.3. PID Gains Setting of WMRA-II
	5.3.1. Tuning Procedure
	5.3.2. Scope
	5.3.3. Auto Tuning
	5.3.4. Manual Tuning

	5.4. C++ Based Programming
	5.5. High-Level Control Programming
	5.6. C++ Low-Level Control Programming
	5.6.1. Establishing the Communication of the Controller Board
	5.6.2. Parameter Initialization
	5.6.3. Motion Control Functions
	5.6.4. Data Record

	5.7. Matlab Low-Level Control Programming
	5.8. User Interfaces
	5.8.1. Touch-Screen
	5.8.2. Spaceball

	5.9. Test GUI for WMRA-II

	Chapter 6:
	Testing and Evaluation of WMRA-II
	6.1. Power Usage of the Robotic Arm
	6.2. Repeatability and Accuracy of the Robotic Arm
	6.2.1. Methodology

	6.3. Use of Different Interfaces
	6.3.1. Touch-Screen Evaluation
	6.3.1.1. Testing Procedure and Results

	First the Touch-Screen was separately evaluated for three translations and rotations of the end-effector using both C++ and Ma
	6.3.2. Spaceball Evaluation
	6.3.2.1. Testing Procedure and Results

	6.4. Manipulability Measure of WMRA-II

	Chapter 7:
	Conclusion
	References
	Appendices
	Appendix A. C++ Programs
	Appendix B. C++ Touch-Screen GUI Program

	About the Author

