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Low-Level Programming of a 9-Degree-of-Freedom Wheelchair-Mounted Robotic Arm 

with the Application of Different User Interfaces 

Punya A. Basnayaka 

Abstract 

 

Implementation of C++ and Matlab based control of University of South Florida’s latest 

wheelchair-mounted robotic arm (USF WMRA-II), which has 9 degrees-of-freedom, was carried 

out under this Master’s thesis research. First, the rotational displacements about the 7 joints of 

the robotic arm were calibrated. It was followed by setting the control gains of the motors. Then 

existing high-level programs developed using C++ and Matlab for USF WMRA-I were modified for 

WMRA-II. The required low-level programs to provide complete kinematics of the joint 

movements to the controller board of WMRA-II (Galil DMC-2183) were developed using C++. A 

test GUI was developed using C++ to troubleshoot the control program and to evaluate the 

operation of the robotic arm. It was found that WMRA-II has higher repeatability, accuracy and 

manipulability as well as lower power consumption than WMRA-I. Touch-Screen and Spaceball 

user interfaces were successfully implemented to facilitate people with different disabilities. 
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Chapter 1:  
 

Introduction 

1.1. Motivation 

Wheelchair-Mounted Robotic Arms (WMRAs) are used as assistive devices for people 

with manipulative and locomotive disabilities in performing their activities of daily living (ADL). 

Based on the combined mobility of the wheelchair and the manipulation of the robotic arm, these 

devices provide multiple degrees-of-freedom (DOF) for movement. Since most wheelchairs are 

non-holonomic and carry only 2 DOF, the use of robotic arms on the non-holonomic wheelchair 

platform can add extra DOF for better manipulation.   

The Center for Assistive and Rehabilitation Robotics Technologies at the University of 

South Florida (USF) has been working on WMRAs with increased DOF. USF WMRA-I has 9 DOF 

(7-DOF robotic arm mounted on a 2-DOF power wheelchair), which give it the capability of 

performing sophisticated ADL tasks that the other commercial WMRAs cannot perform. USF 

WMRA-II has been fabricated with an improvised robotic arm, which employs more precise 

motors and a robust single compact controller board (Galil DMC-2183), with the intention of 

enhancing the accuracy of motion. Its workspace has also been expanded by changing the link 

lengths to reach objects placed further away. 

Development of a WMRA has two major phases; (i) design and fabrication, and (ii) 

development of computer programs to control its operation. In programming WMRAs, 

communication between hardware (robotic arm and the wheelchair) and software (control 

program) is achieved through a controller board. The optimum kinematics for the required motion 

is calculated in the software and sent to the controller board, which eventually translates that 

information to voltages and currents to be supplied to the motors at each joint. WMRA-II had 

been newly fabricated and the control programs had to be developed ensuring that the intended 
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improvements are achieved. Furthermore, accessibility of differently disabled persons to WMRA-

II had to be enabled by integrating suitable user interfaces.  

1.2. Thesis Objectives 

 WMRA-I had originally been programmed using Matlab, with a C++ dynamic link library 

(dll) to communicate with the controller board. Matlab had been used as a convenient tool for 

accurate evaluation of mathematical equations and simulation. C++ had been used to 

communicate with the controller board, because it is widely used in embedded system 

applications as a low-level language that provides fast and efficient execution. However, the 

control operation of WMRA-I had been often obstructed by failure of the communication between 

the Matlab program and the C++ dll library. Therefore, the programming approach had to be 

changed to attain continuous controllability of the robotic arm. The Matlab codes developed to 

control WMRA-I were converted to C++ to achieve the above purpose. 

Main objective of the research carried out under this thesis was to control the robotic arm 

of USF WMRA-II in autonomous mode and in teleoperation using different user interfaces to 

enhance the accessibility of people with different disabilities. Since the kinematic arrangement of 

WMRA-II is similar to WMRA-I except for the link lengths, WMRA-I’s C++ and Matlab high-level 

control programs, which calculate the optimum trajectory for any required motion, could be used 

for WMRA-II, after changing the system parameters including the geometrical parameters. Since 

the motion controllers are different for WMRA-I and WMRA-II, low-level controller board functions, 

which provide complete kinematics of the required motion to WMRA-II controller board (Galil 

DMC-2183), had to be developed using C++ and Matlab. The major tasks carried out in achieving 

the above objectives are listed below. 

1. Tuning the motors of WMRA-II for PID gains to minimize the overshoots and errors. 

2. Calibrating rotational displacement at the 7 joints with respect to the encoder 

readings of the motors. 

3. Developing C++ functions to communicate with the controller board. 
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4. Modifying existing high-level programs for WMRA-I written in C++ and Matlab to use 

them for WMRA-II. 

5. Developing low-level C++ and Matlab programs to calculate the complete kinematics 

of all joints (position, velocity and acceleration in encoder readings) and to 

communicate the calculated kinematics to WMRA-II controller board. 

6. Testing WMRA-II with the developed C++ and Matlab control programs for accuracy, 

repeatability and manipulability. 

7. Developing C++ Graphical User Interface (GUI) for Touch-Screen control 

8. Evaluating WMRA-II for Spaceball and Touch-Screen user interfaces by using C++ 

and Matlab programs. 

9. Comparing performances of WMRA-I and WMRA-II 

10. Implementing a test GUI for individual joint testing and for troubleshooting the robotic 

arm. 

1.3. Thesis Outline 

The rest of this thesis is organized under chapters as mentioned in this outline. Chapter 2 

is a brief survey on previous work done on WMRAs, programming languages that have been 

used in robots, and other assistive devices used to facilitate disabled people. Chapter 3 describes 

the closed-loop control system of WMRA-II. Chapter 4 is on the hardware of WMRA-II, including 

the robotic arm, wheelchair and controller board. It also includes the comparison of DH-parameter 

of the two WMRAs. Chapter 5 shows how WMRA-II was programmed using C++ and Matlab 

languages including the development of controller board functions and the GUI for Touch-Screen 

user interface using C++. Chapter 5 also describes calibration of the joint axes of the robotic arm 

and PID gains setting of all the motors in the robotic arm. Chapter 6 presents the results from the 

testing of WMRA-II with the developed C++ functions and the evaluation of Spaceball and Touch-

Screen user interfaces for controlling the robotic arm. The results obtained for WMRA-II were 

compared with those for WMRA-I at the end of Chapter 6. Chapter 7 concludes the thesis.  
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Chapter 2: 
  

Background 

The main purpose of developing rehabilitation robot systems is assisting people with 

disabilities in their Activities of Daily Living (ADL). The Rancho “Golden” arm, developed at 

Rancho Los Amigos Hospital in Downey, California in 1969 is the first successful rehabilitation 

robot manipulator found in the history [1]. Although these very first robotic arms were not 

extensively used by consumers, they established the foundation for further development in the 

field.   

Rehabilitation robotic arms are developed to perform common tasks like carrying, 

grabbing, picking up and moving objects that a person will encounter in his/her ADL tasks. For 

example, robotic arm MANUS [14] is an assistive robot helping numerous ADL to be carried out 

in home, at work, and outdoors [12]. Robotic arm KARES [11] helps people with disabilities with 

12 tasks of ADL [13]. 

2.1. Main Types of Rehabilitation Robots 

Survey of the different rehabilitation robotic projects shows four main development 

concepts of robots in the rehabilitation field [2], [3]. 

1. Workstation Robots (static robots that operate in a structured environment) 

2. Stand alone manipulators 

3. Wheelchair-mounted robotic systems 

4. Mobile manipulators  
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2.1.1. Workstation Robots 

Workstations were the first robots designed for people with disabilities. The purpose was 

to give disabled people more autonomy in their daily work. Basically, a workstation is made of a 

desk and some shelves where a robotic manipulator is fixed. The robotic arm is programmed to 

get some objects, such as a telephone, book, etc. whose positions are perfectly known. DeVAR 

(Desktop Vocational Assistant Robot) [4], ProVAR (Professional Vocational Assistant Robot) [5], 

RAID (Robot for Assisting the Integration of the Disabled) [6] and Master are some examples of 

desks equipped with a robotic arm.  

Stanford University built 4 generations of DeVAR systems. DeVAR III was a tabletop 

system laid out for daily living tasks, while DeVAR IV was used in a vocational environment. 

DeVAR III was successful for tasks like brushing teeth, preparing meals, and shaving. ProVAR 

was the successor of DeVAR [5]. It featured a Programmable Universal Machine for Assembly 

(PUMA-260) robotic arm and a human prosthetic end-effector mounted on a overhead track 

(Figure 1) that provided the open range of access to the object near the user. 

 

Figure 1: ProVAR (track-mounted upside-down PUMA-260) [4] 

In an office environment, it is important to combine communication with manipulation, 

telephone control, and environmental control. The ProVAR interface included a single command 

structure for these three types of tasks. The voice recognition and digitizing card (VOTAN VPC-

2100) allowed calls to be answered automatically in speakerphone mode. The robot could be 

commanded to pick up the phone receiver if a private conversation was desired. A computer-
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interfaced environmental control unit (ECU) based on the X-10 standard allowed control of lights 

and small appliances by voice. 

 The majority of tasks within the RAID robot domain involved the transfer of physical 

media from one location to another. It used the RTX robot to manipulate computer, computer 

peripherals (scanner, printer, CDs) and telephone. Wheelchair user controlled RAID through a 

joystick which eliminated a mouse to access the user interface. 

 

Figure 2: RAID Workstation Layout [6], [35] 

Another type of workstation is low-cost workstations dedicated to self feeding tasks. They 

consist of a light weight robotic arm mounted on a special plate that is either put on a table or 

mounted on a stand. RAIL [7], Handy-1 [8] developed at, University of Kale, UK and MySpoon 

developed at SECOM’s Intelligent Systems Laboratory, Japan [9] are some examples of this type 

of systems. Figure 3 shows Handy-I and My Spoon systems. Workstation robots are 

mechanically stable but are unable to react to changes in its environment. Main objective of 

designing Handy-I was to develop a low cost rehabilitation robotic system capable of being 

operated by people with severe disability, enabling them to gain independence in many daily 

living activities such as eating and drinking, shaving, cleaning teeth, applying make-up, washing, 

playing games and painting and drawing. In 1997 the implementation of sensors to the Handy-1 

benefited the eating and drinking attachment and in 1998, the project showed a progress in 

drinking and eating. 
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Figure 3: My Spoon (left) and Handy-1 (right) Feeding Aids [8] 

 

Figure 4: Handy-1’s Washing, Shaving and Teeth Cleaning Tray (left) and Make-Up Tray 
(right) [8] 

2.1.2. Stand Alone Manipulators 

Unlike workstation-based systems, stand-alone systems typically use larger robotic 

arms to increase the workspace and they are not attached to any object. The work environment is 

not fixed as in the case of workstation robots. Sensors are used to get information about the 

robot’s environment. The Tou robot [10] developed at the Polytechnic University of Catalunya in 

Spain and the ISAC (Intelligent Soft Arm Control) robot developed at the Intelligent Robotics 

Laboratory at Vanderbilt University [3] are two examples of stand-alone manipulators. 

 Tou is designed to provide tetraplegic people with some autonomy in their daily 

activities. It can perform simple tasks such as picking objects and rearranging the bed. The 

system consists of a robotic arm built from foam-rubber modules, a personal computer and the 
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communication interface. It uses three different communication interfaces: a speech recognition 

system, a joystick and a special keyboard. Tasks performed by ISAC include feeding soup, 

feeding fries and assisting in drinking. The user interacts with ISAC through a voice recognition 

system. ISAC uses pneumatic actuators called rubbertuators which behave like human muscles. 

This allows the robotic arm to have natural compliance.  

2.1.3. Wheelchair-Mounted Robotic Systems 

These systems allow people with disabilities to feed themselves and reach objects on the 

floor, on a table or above the head. Two types of wheelchair-mounted robotic arms are 

commercially available. The current market leader of this type is the MANUS (6-DOF robotic arm) 

[11] from Exact dynamics as shown in Figure 5. The second one is Rapture (4-DOF robotic arm), 

which is produced by the Rehabilitation Technologies Division of the Applied Resources 

Corporation. The Manus is a relatively high cost and sophisticated robotic arm whereas the 

Rapture robotic arm costs one third of the cost of the Manus, but caries very limited functionality.  

 

Figure 5: Manus Robotic Arm [34], [35] 

The Manus robotic arm has been controlled by the devices adapted to people with 

disabilities such as smart ball, breath control, movement base control, and joystick [20], [1]. The 

Rapture robotic arm [16] is controlled by a key pad and a secondary joystick. MANUS and 

Rapture robotic arms have been used by many research institutions to develop WMRA systems 

with enhanced performance by incorporating various sensing devices.  
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FRIEND [12] and VICTORIA [15] are another two examples for commercial WMRAs. 

Their purpose is to move the robotic arm by using information given by vision sensors. FRIEND I 

was developed by the Institute of Automation at the University of Bremen in Germany. It employs 

the Manus robotic arm. FRIEND II was the successor of FRIEND I. FRIEND I and FRIEND II 

have been controlled using voice commands. FRIEND II has also been controlled with a Brain 

Computer Interface (BCI) that reads the user’s electroencephalographic (EEG) signals to control 

the robotic arm as shown in Figure 6. On the other hand, VICTORIA sets up a mimic recognition 

interface and a Touch-Screen to control the robotic arm.  

 

Figure 6: University of Bremen’s FRIEND II Exhibited at ICORR’07 [35] 

The Bath Institute of Mechanical Engineering in the United Kingdom implemented a 

custom WMRA called Weston. Weston was a successor of Wolfson, a workstation, and Wessex, 

a mobile manipulator [36]. It was designed to maximize the range of manipulation in horizontal 

plane and evaluated with four end-users: two spinal cord injury patients and two spinal muscular 

atrophy patients. Weston WMRA can be controlled in Cartesian space and in Polar coordinates 

and can be programmed with six tasks.  

USF WMRA-I has a 7-DOF robotic arm mounted on a power wheelchair. This WMRA is 

unique because of its increased DOF. A complete description of USF WMRA-I is given in section 

2.5. 
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2.1.4. Mobile Robots 

Mobile robot systems navigate autonomously and perform tasks for the user. These 

systems are very useful for bed-bound users. WALKY [17], MoVAR, ARPH, HERMES, KARES 

11 [13], and CARE-O-BOT are examples of such system. These robots have several 

characteristic advantages such as the ability to move independently from the wheelchair, moving 

from one room to another to fetch and carry objects, and serving more than one person.  

MoVAR, developed at Stanford University, is one of the best known mobile robots. 

MoVAR uses DeVAR robot as the arm and omni-directional wheels on a mobile base. MoVAR 

was successfully tested by end users for different ADL. A localization system based on cameras 

and lasers has been employed on MoVAR to improve task execution in the home environment.  

KARES II was successfully tested for 12 tasks including wiping and scratching face, picking up 

objects, opening/closing doors, etc. A Visual Servoing module was adapted for vision based 

control of the robotic arm, and for a human-friendly interface for face recognition. 

 

Figure 7: Care-O-Bot Serving Food (operated fully autonomously) 

2.2. Robot Programming Languages 

Robot programming languages have been developed to control robots in different 

environments and with different geometrical capabilities. Some of these programming languages 

were developed by modifying the general purpose computer languages, and others were 

specifically developed for Robots. Robot programming languages can be of three categories [29]. 
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1. First generation languages. 

2. Second generation languages. 

3. World modeling and task-oriented object level languages. 

First generation languages provide offline programming and the robot is usually 

controlled using a teach pendent. However, they are not capable of handling sensory data except 

ON/OFF binary signals and communication with other computers. VAL is one of the examples for 

the first generation programming languages. Second generation languages are structured 

programming languages with which complex tasks can be programmed. Force and torque 

sensors, which are connected to joints and grippers of robots, can be integrated to robot 

controller using a second generation language to achieve better motion control. Robots controlled 

with these languages behave more intelligently because of advanced sensory capabilities. They 

can recover in an event of malfunctioning. VAL-II and RAIL are two examples for second 

generation languages. World modeling and task-oriented object level languages are very popular 

because of their capability of task oriented controlling. These are general purpose computer 

languages. Many sensory devices (e.g. camera, laser, etc.) can be handled with these 

languages. They are used to control both industrial and rehabilitation robots using commands or 

automatically. Robots programmed with these languages are more intelligent than the others. 

C/C++, Matlab and LabVIEW are the most widely used general purpose languages [32].  

C/C++ languages have been recently used in controlling many rehabilitation robots such 

as MIT Manus, UCF Manus and USF WMRA-I [30]. USF WMRA-I can also be controlled using 

Matlab. Robot library for ProVAR assistive robot has been developed using C++ and compiled 

with Watcom C/C++ compiler [31]. Some of the implemented functions include matrix operation, 

forward kinematics, inverse kinematics, trajectory generation, PID control, TCP/IP communication 

and various drivers for low-level hardware (e.g. encoders, force sensors, etc.) communication. 
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2.2.1. C++ Software Architecture of USF WMRA-I 

The C++ control algorithm of WMRA-I has two parts; the main script and several 

functions supporting the main script. The main script is the stem of the control algorithm and all 

the libraries, which are used in supporting functions, are declared first in the main script. They are 

followed by the commands for displaying user options. When the options are input, the rest of the 

script passes those to supportive functions, where necessary calculations are performed and 

results are sent to a function called ArmMotion. This function then builds the communication with 

the controller board and sends necessary kinematics data to the controller board. 

WMRA-I control algorithm uses both standard built-in C++ libraries (e.g. math, time, 

iostream, etc.) and external open source libraries (matrix and vector) [30]. It is a modular type 

algorithm that allows modifications.  Every supporting function has two files called a header (.h) 

file and a source (.cpp) file. The header file consists of function prototypes and other supportive 

libraries while, the source file contains the function body including manipulation of data to 

calculate necessary outputs as a function return. The arguments and the returns of those 

functions are of matrix, vector or scalar data types.   

2.2.2. Matlab Software Architecture of USF WMRA-I 

Matlab control algorithm also consists of a main script assisted by other supportive 

functions. Logic of the program stays the same as that for the C++ control algorithm. However, 

the low-level program uses a C++ dll library to communicate with the controller board. The control 

algorithm utilizes built-in Matlab functions to perform all the calculations. Matlab control program 

is associated with a 3-DOF stick-figure simulation of the WMRA, which generates plots visualizing 

the real-time kinematics of the robotic arm and the wheelchair.  

Both the control programs have their own pros and cons. It has been found that the 

processing time of the C++ algorithm is lower than that of the Matlab algorithm. Therefore, the 

C++ control program is more suitable for real-time control applications. However, Matrix 

manipulations in C++ are less convenient, and hence some of the C++ functions are more 
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complex and longer than their Matlab counterparts. Furthermore, Matlab control algorithm 

provides simulations and plots of the intended operations of the WMRA.  

2.3. Human Machine Interface 

In general, a complete WMRA system should consist of a main computer, a robotic arm 

with its low-level controller, sensors, a power wheelchair, and user interface devices that interact 

with the user (Figure 8). It should be able to perform certain predefined tasks autonomously, or 

be teleoperated by the user. 

 

Figure 8: Basic Elements of a WMRA System 

The ability of a person to understand and manipulate a device is a significant challenge 

for people with disabilities. People with disabilities can have a wide range of strengths and 

challenges. These differences can be in cognitive ability, sensory impairments, motor dexterity, 

behavioral skills, and social skills.  Cognitive differences may be seen when a person is 

performing tasks that require problem solving or memory skills. Sensory skill issues are evident 

when a person has vision or hearing loss, tactile challenges, or difficulty to concentrate in 

distracting environments. Motor demands can be a barrier when a task involves isolating 

individual fingers, aiming at small targets, or other precise and graded movements. Many tasks 

require frustration tolerance, impulse control, turn taking, and other social skills. Devices 

designed to assist people with disabilities must take into account the above differences. 
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Generalizations over populations cannot be made for Human-Robot Interaction (HRI) in Assistive 

Technology (AT). The same task should be able to be performed in several ways. As the user 

adapts to the system, he/she can chose the most comfortable option to perform a certain task. In 

other words, each person is unique, and often has his/her own customized solution. For people 

with disabilities, the following HRI-AT design guidelines have been proposed by [25].  

1. Interfaces should be easy to use without being complex. 

2. Interfaces should have minimal length processes.     

3. Ability to carry out multi-step processes. 

4. Interfaces should adjust prompting levels. A person may require some form of   

prompting to perform a process. 

5. Interfaces should leverage a person's sensory skills to augment their feedback. 

6. Interfaces should accommodate multiple access devices.  

According to the user’s level of disability, functional capability and preference, a different 

set of human-robot interfaces can be chosen to drive the robotic system in a desirable manner. 

Devices, such as Touch-Screen, Spaceball, joystick, microphone and laser pointers are among 

user interface devices that can be used in WMRAs as interface devices. Different parts of the 

upper body such as fingers, wrist and head can be used to operate different interface devices. 

Table 1 illustrates the body parts that are capable of controlling different devices. The symbol √ is 

used to indicate that the device can be used appropriately with certain body function. For people 

with disabilities, depending on the level of the injury, dexterity may vary from finger motion to wrist 

motion to gross robotic arm motion. For example, for upper level Spinal Cord Injured (SCI) 

patients, dexterity is only available in the head and neck. So according to table 1, a head tracker, 

which is used to detect the movement of the head, can be used as interface devices [20] to 

control the robotic arm.  Figure 9 shows one of the head trackers that are commercially available 

for people with disabilities with little or no control of their hands. This head tracker uses an 

infrared beam and according to the head movement, a mouse click events are created in the 

computer screen. It can be operated through a USB port of the computer.  
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Figure 9: Head Tracker 

Table 1: Interface Devices Matching with Body Functions [20] 

Device Fingers Wrist Arm Head/Neck 

Touch-Screen √ - - - 

Spaceball √ √ - - 

Microphone(Speech) √ √ √ √ 

Joystick √ √ √ - 

Head Tracker - - - √ 

 

According to some surveys [3] [2], people with disabilities expect robots to give them a 

better autonomy in their everyday life. Furthermore, they are concerned about the quality and the 

cost of the tools provided by rehabilitation robotics. They demand for safe, reliable and 

uncomplicated devices that do not require too much training. Because of their low cost and ease 

of use, Handy-1 and MANUS robotic arms have been commercially successful. 

All robots mentioned above are equipped with several control modes; manual, automatic 

and shared. In [18], it is shown that even though people find automatic and shared modes 

interesting, 80% judge the manual mode as a necessity for safety. However, in practice it is too 

slow and complicated. 
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2.4. Safety 

Safety is one of the key factors when developing assistive systems for disabled people. 

Since the user is in close proximity to the assistive robot system the safety issues is very critical. 

The hardware of the system should be safe and the software should be very reliable to avoid 

unnecessary movements of joints. After designing them, such a system should be evaluated for 

safety. Some researchers consider safety as one of the evaluation criteria when they test their 

systems [1].  

Potentially harmful situations can occur from unexpected movements of the body of the 

user or sneezing and coughing. The robotic systems should be able to detect these harmful 

situations and react accordingly.  In DeVAR, the robot stops and shuts off if the user says ‘stop’ 

or shouts or if it encounters a resistance higher than a predefined threshold [23]. In USF WMRA-I 

two safety measures have been added to the hardware. The first is a panic stop button which is 

positioned under the right elbow of the user to stop the power supply to the robotic arm from the 

batteries without shutting off the logic power. The second safety measure is the timer. The power 

will cut off automatically if the system stays in idle for long time. 

2.5. Overview of USF WMRA-I 

USF WMRA-I [26] has a 7-DOF robotic arm, a 1- DOF gripper and a non-holonomic 

power wheelchair. Figure 10 shows WMRA-I and table 2 presents the specifications of it. WMRA-

I provides a virtual robot interface and separates low-level software and hardware from the high-

level robot control programming. It also provides a set of reusable and portable high-level control 

codes. Originally, it was programmed using Matlab and later the complete high-level program was 

converted to C++ due to some issues in reliably controlling the devices. Matlab and Virtual Reality 

have been used for simulation of WMRA-I.  

The main control interface for WMRA-I uses a GUI which is used to control the robotic 

arm and the wheelchair in teleoperated mode and in autonomous mode. Other control interfaces 

include the Spaceball from which the WMRA-I can be controlled in 6-DOF, and the P300 Brain 
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Computer Interface (BCI) which is being developed in collaboration with the psychology 

department at USF. The BCI uses a fitted cap with electrodes mounted on it to sense EEG brain 

activities while the user is viewing a series of options on a computer. Other possible methods of 

controlling the robotic arm include joystick and the Phantom Omni, which is a six-degree-of-

freedom device that provides a force feedback.  

 

Figure 10: WMRA-I [7] 

Table 2: WMRA-I Specifications [26] 

Parameter Value 

Mass of the robotic arm/(kg) 12.5 

Mass of the wheelchair (Including power supply)/(kg) 136 

DOF 9 

Maximum reachable height above floor/(m) 1.37 

Designed payload/(kg) 6 

Actuator Type Brush  DC servo motors 

Controller board Pic-Servo SC 

Average Current Draw/(A) 2 

Transmission Harmonic drive 

Chair width increase with side mount/(cm) 7.5 
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Chapter 3: 
  

Closed Loop Motion Control System of USF WMRA-II 

3.1. Introduction 

To achieve a full WMRA control, high-level programming is necessary to calculate 

Cartesian trajectories, inverse kinematics and optimization based on criteria functions. Then low-

level control is necessary to pass on the commands to the control board and drive the system. 

This thesis is continued with the low-level control of WMRA-II, and the high-level control is 

outside the scope of this thesis. 

A typical closed loop motion control system (a servo control system) should consist of the 

main elements shown in Figure 11. 

 

Figure 11: Close Loop Motion Control System Block Diagram 

3.2. Motion Controller 

The motion controller of WMRA-II (Galil DMC-2183) consists of a digital to analog 

converter (DAC) and a digital filter.  In the Galil motion controller there are three types of 

elements added in series; a PID controller, a low pass filter and a notch filter. All the parameters 

in the filters are in terms of proportional gain (KP), integral gain (KI) and derivative gain (KD) of 

the PID controller. The signal passing through the DAC is converted to a signal in the range of 

+10 V to -10 V. This signal is then amplified (in the Driver shown in Figure 11) and finally sent to 
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the motor. Sending and receiving signals can be done using either both RS-232 or Ethernet 

TCP/IP ports. Functions of the motion controller can be listed as follows. 

1. Generation of motion profiles in terms of voltage signals 

2. Closing the position feedback loop 

3. System compensation 

4.  Input/Output handling  

3.3. Motors 

Servo motors are used in industry in positioning applications. There are two types of 

servo motors used in WMRA-II, namely brushed and brushless DC motors. Brushed motors are 

lower in cost and simpler in design. However, the brushes and commutator can wear decreasing 

the life time of the motor. Brushless motors are generally capable of carrying more torque, and 

gearheads can be used to adjust the torque in these motors. These are more expensive than 

brushed motors. Heat dissipation and noise are generally lower in brushless motors. Brushless 

motors have been selected for the first 4 links of WMRA-II robotic arm and brushed motors were 

selected for the last three links. Each motor of the robotic arm consists of a gear head and a 

position sensor.  

3.4. Position Sensor (Encoder) 

Position sensors are used to get the position feedback of the joints to the control 

program. There are two main types of encoders, absolute encoders and incremental encoders or 

relative encoders. Absolute encoders provide a unique digital word for any rotational position of a 

shaft whereas incremental encoders provide digital pulses with the shaft rotation from which 

relative measurements can be obtained. Absolute encoders are used in applications where a 

device is inactive for long periods of time or moves at slow speeds. Incremental encoders are 

simple in application and also less expensive. The number of square wave cycles produced by an 

incremental encoder per complete rotation of the shaft is called the encoder resolution. 
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Servo motors used in WMRA-II (Maxon) include of incremental encoders. These 

encoders are usually supplied with two channels (A & B) that are offset from each other by 1/4 of 

a cycle (90 degrees). This signal pattern is referred to as quadrature and allows the user to 

determine not only the speed of rotation but its direction as well. By examining the phase 

relationship between A and B channels, one can determine if the encoder is turning clockwise (B 

leads A) or counterclockwise (A leads B). If an incremental encoder giving N number of pulses 

per revolution outputs two signals, channel A and B, which are in quadrature, the position 

resolution is increased to 4N quadrature counts/rev. The resolution of the encoder can be 

represented by a gain of Kf = 4N/2π [count/rad]. Figure 12 illustrates details about an incremental 

encoder. 

 

Figure 12: Quadrature Detection of an Encoder and Elements of Optical Encoder [28] 

3.5. Computer 

This is the place where the control program is stored and run. The users can use various 

interface devices such as joystick, Touch-Screen and Spaceball and BCI to input the information. 

The computer performs calculations and generates necessary outputs to be sent to the controller. 

Data transfer between the user interfaces, the control program and the controller board is 

accomplished either through Serial port or Ethernet TCP/IP port. 
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3.6. PID Feedback Controller 

A proportional–integral–derivative controller (PID controller) is a generic control loop 

feedback mechanism (controller) widely used in industrial control systems. To achieve the best 

performance, the PID parameters used in the system must be tuned according to the nature of 

the system. The PID controller calculation (algorithm) involves three separate parameters: the 

proportional, the integral and derivative values, denoted KP, KI, and KD. The proportional value 

determines the reaction to the current error, the integral value determines the reaction based on 

the sum of recent errors, and the derivative value determines the reaction based on the rate at 

which the error has been changing [38]. 

The proportional term (KP gain) makes a change to the output that is proportional to the 

current error value. The proportional response can be adjusted by multiplying the error by a 

constant KP, called the proportional gain. The proportional term is given by equation (1). 

���� � �� � �	�
         (1) 

The contribution from the integral term is proportional to both the magnitude of the error 

and the duration of the error. Summing the instantaneous error over time (integrating the error) 

gives the accumulated offset that should have been corrected previously. The accumulated error 

is then multiplied by the integral gain and added to the controller output. The magnitude of the 

contribution of the integral term to the overall control action is determined by the equation (2).  

Equation (3) is the magnitude contribution of the derivative term. 

��
� � �� � �	�
����          (2) 

���
�� � ��� ��� ���	�
         (3) 

Galil controllers provide a compensation filter, which includes a PID (Proportional-

Integral-Derivative) filter followed by a notch filter as shown in Figure 13 [37]. 

 

http://en.wikipedia.org/wiki/Control_loop
http://en.wikipedia.org/wiki/Feedback_mechanism
http://en.wikipedia.org/wiki/Controller_%28control_theory%29
http://en.wikipedia.org/wiki/Control_system
http://en.wikipedia.org/wiki/PID_controller#Loop_tuning
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/Derivative
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Figure 13: PID Block Diagram of Galil Tuner [37] 

3.6.1. Overview of Tuning Methods 

There are several methods for tuning a PID loop. The most effective methods generally 

involve the development of some form of process model, and then choosing KP, KI, and KD 

based on the dynamic model parameters. Manual tuning methods can be relatively inefficient, 

particularly if the loops have response times on the order of minutes or longer. 

The choice of method will depend largely on whether or not the loop can be taken 

"offline" for tuning, and the response time of the system. If the system can be taken offline, the 

best tuning method often involves subjecting the system to a step change in input, measuring the 

output as a function of time, and using this response to determine the control parameters. 

3.6.2. PID Tuning Software 

Most modern industrial facilities no longer tune loops using the manual calculation 

methods shown above. Instead, PID tuning and loop optimization software are used to ensure 

consistent results. These software packages will gather the data, develop process models, and 

suggest optimal tuning. Some software packages can even develop tuning by gathering data from 

reference changes. [38] 

Mathematical PID loop tuning induces an impulse in the system, and then uses the 

controlled system's frequency response to design the PID loop values. In loops with response 
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times of several minutes, mathematical loop tuning is recommended, because trial and error can 

literally take days just to find a stable set of loop values. Optimal values are harder to find. Some 

digital loop controllers offer a self-tuning feature in which very small setpoint changes are sent to 

the process, allowing the controller itself to calculate optimal tuning values. 

Other formulas are available to tune the loop according to different performance criteria. 

Many patented formulas are now embedded within PID tuning software and hardware modules 

[38].  
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Chapter 4: 
 

Denavit-Hartenberg Parameters and Hardware of USF WMRA-II 

4.1. Denavit-Hartenberg Rules 

The position and orientation of a robotic manipulator is described using kinematic 

equations. Two different approaches can be taken to express the position. 

1. Joint space, which represents the angular position of each joint of the manipulator. 

2. Cartesian space, which consists of position (x,y,z) and orientation (α, β, γ 

represented by a  � � � matrix called the “rotation matrix”) of the end-effector 

(gripper) in space. 

Forward kinematics can be used to transform coordinates from joint space to Cartesian 

space. This transformation depends on the configuration of the robot (i.e. link lengths, joint 

positions, type of each joint, etc.). In order to describe the location of each link relative to its 

neighboring link, a frame assigned to each link is created, and a set of parameters are specified 

to characterize the frame. This representation is called the Denavit-Hartenberg (DH) notation [22]. 

Application of the DH rules for frame assignment of WMRA-II is briefly explained in this chapter.  

There are two versions of DH rules. 

1.   Proximal 

2.   Distal 

The main difference between the two is labeling of the indices. In this explanation, the 

proximal system will be used to find frame assignments. The steps in frame assignment using 

proximal labeling system are explained below with the notation shown in Figure 14. 
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1. Identify the joint axes and imagine lines of infinite length along them. For steps 2-5, 

consider two of these neighboring lines (at axes i and (i+1)). 

2. Identify the common perpendicular between two axes, or if the axes intersect, the 

point of their intersection. Assign the link-frame origin at the point of intersection, or at 

the point where the common perpendicular meets the ith axis. 

3. Assign axis zi pointing along the joint axis i. 

4. Assign axis xi pointing along the common perpendicular, or if the axes intersect, 

assign xi to be normal to the plane containing the two axes. 

5. Assign yi to complete a right-hand coordinate system. 

6. Assign {0} to match {1} when the first joint variable is zero. For {N}, choose an origin 

location and xN free from the direction, keeping as many linkage parameters as zero.  

 

Figure 14: Link Frames Assignment [22] 

If the DH frames are assigned properly, then the definition of the link parameters are as given in 

table 3. 
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Table 3: DH-Parameter Description 

Parameter symbol Description 

ai the distance from zi to  zi+1 measured along xi 

αi the angle between  zi and   zi+1  measured about xi 

di the distance from  xi-1 to ��� measured along zi 

θi the angle between  xi-1 and  xi measured about zi 

4.2. DH Parameter Assignment for USF WMRA-II 

Figure 15 shows a Solid Works model of WMRA-II and link lengths are in millimeters as 

well as the frames assigned to each link. Table 5 shows the modified link lengths of WMRA-II 

from those of WMRA-I. Other parameters have been kept the same for the two WMRAs. 

Procedure for obtaining forward kinematics and inverse kinematics for WMRA-II robotic arm and 

combined mobility and manipulation theory used [26] are similar to those for WMRA-I.   

 

Figure 15: Frame Assignment of WMRA-II 
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Table 4: DH-Parameter Comparison of Two Robotic Arms 

i 
α(i-1)   a(i-1)  di   ѳi  

WMRA-
I 

WMRA-
II 

WMRA-
I 

WMRA-
II 

WMRA-
I 

WMRA-
II 

WMRA-
I 

WMRA-
II 

1 -90 -90 0 0 110 103 θ 1 θ 1 

2 90 90 0 0 146 133 θ 2 θ 2 

3 -90 -90 0 0 549 502 θ 3 θ 3 

4 90 90 0 0 130 90 θ 4 θ 4 

5 -90 -90 0 0 241 375 θ 5 θ 5 

6 90 90 0 0 0 0 θ 6 θ 6 

7 -90 -90 0 0 179 161 θ 7 θ 7 

4.3. Hardware Architecture 

WMRA-II system consists of a standard electric wheelchair, a 7 DOF robotic arm, an on-

board controller, a power supply and a tablet PC. 

4.3.1. Power Wheelchair 

Powered wheelchairs were first developed in early 1970s. The performance of the 

wheelchairs is dependent on the weight of the entire system. Conventional wheelchairs are 

difficult to maneuver in constrained spaces because they only have two degrees of freedom to 

move the wheelchair in a 3-DOF plane.  

A number of computer controlled wheelchairs have been developed in recent years, 

including CALL Smart Chair, NavChair, TinMan and WALKY [21]. Such chairs use a wide variety 

of sensors ranging from cameras, encoders, accelerometers, and gyroscopes with a desired input 

device such as communication aids, conventional joysticks, sip and puff switches, pressure pads, 

laser pointers, speech recognition systems and force reflecting joysticks. 
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Quickies 626 Wheelchair is the one used for WMRA-II (Figure 16). It is a conventional 

wheelchair with 2-DOF differential drive. A joystick is used as the input device to navigate the 

chair. Table 5 shows the specifications of this wheelchair. 

 

Figure 16: Quickie 626 Wheelchair 

 

Table 5: Specifications of the Wheelchair 

Parameter Value 

Overall Length 29" 
Overall Width 25" 
Weight Capacity 250 (400lb optional) 
Overall Weight 128 lb w/o batteries 
Operating Voltage 24V 
Performance 7 Mph 

 

Although it is a conventional wheelchair, two incremental encoders are mounted on the 

wheels to make it a closed loop system. A computer input can also be used to control it. 

4.3.2.  7-DOF Robotic Arm 

The robotic arm of WMRA-II is similar to that of WMRA-I robotic arm except for the 

changes in link lengths and couplings. It was designed by the rehabilitation engineering research 

group of USF and fabricated in USF’s machine shops. Figure 17 shows a CAD drawing of the 

robotic arm and Figure 18 shows the fabricated robotic arm. The robotic arm was initially 
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fabricated using carbon fiber tubes. Due to its incapability of withstanding considerable torques it 

was later fabricated using aluminum. More precise motors were mounted during this second 

fabrication to obtain more precise motion. 

 

Figure 17: CAD Drawing of WMRA-II Robotic Arm 

 

Figure 18: WMRA-II Robotic Arm  

4.3.3. Power Supply 

Both the controller board and the wheelchair use a 24V DC power supply which is a part 

of the wheelchair. The power unit is placed under the seat of the wheelchair. Battery life should 

be sufficiently long for the system to perform without any trouble.  

4.3.4. Controller Board 

Motion controller of WMRA-II is Galil DMC-2183. It is capable of controlling a maximum 

of 8 motors. Brushless and brushed motors can be controlled simultaneously using this controller. 

The driver system to which the controller transfers data in terms of a voltage signal consists of 
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brushless (AMP-20540) and brushed (AMP-20440) motors and two amplifiers. The two amplifiers 

are mounted on top of the controller board as shown in Figure 19. Both Serial port and Ethernet 

port can be used to communicate with the controller using a PC. 

 
 

Figure 19: Controller Board (Galil DMC-2183) 
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Chapter 5: 
  

Calibration and Programming of USF WMRA-II 

5.1. Axis Calibration of WMRA-II 

All the joint angles, which are in radians in the high-level program, should be converted to 

encoder counts in order to control the motors of the robotic arm. An experiment was carried out to 

find the radians-to-encoder-counts conversion factor for each motor.  First, the theoretical number 

of encoder counts to run each motor by 180 degree was found from data sheets provided by the 

manufactures. Then all the motors were run by the amount obtained from data sheets. Amount of 

rotations were recorded for all the joints by using a laser tracker, protractor and a ruler. Then the 

theoretical values are adjusted to get the 180 degree movements of each joint.   

Motors of the robotic arm were labeled as indicated in Figure 20. Table 6 shows the 

information provided by the data sheets and Table 6 contains the theoretical and experimental 

conversion factors. It can be seen from Table 7, that the theoretical conversion factors are slightly 

different from the experimental ones. The backlash present in the mechanical joints and the gears 

in the couplings and axis misalignment can be the reasons for these differences.  

 

Figure 20:  Labeling of Motors of the Robotic Arm 
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Table 6:  Data from Manufacturer’s Datasheets 

 

 

 

 

 

 

Table 7: Radians to Encoder Counts Conversion Factors 

Axis Label Theoretical factor Experimental factor 

A π�������� π�������� 
B π�������� π�������� 
C π�������� π�������� 
D π�������� π�������� 
E π�������� π�������� 
F π�������� π�������� 
G π�������� π�������� 

5.2. Calculation of Velocity and Acceleration 

Parameters for position controlling were calculated assuming that time and numbers of 

encoder counts were known. 

 � ! � �         (4) 

�" � #$% �  � �& ' ( � 	) * ��
+ ' #$% �  � �&      (5) 

Solving equations (4) and (5) for velocity v, following expression can be obtained. 

 % * ! � ) �  ' �" � ! � � 

 � 	! � )
�� , -.	! � )
% * � � �" � !/��      (6) 

Motor label 
Encoder 

counts per 
revolution 

Quadrature 
type 

Gear head 
reduction 

Harmonic drive 
reduction 

A 500 yes 51:1 100:1 
B 500 yes 51:1 100:1 
C 500 yes 51:1 100:1 
D 500 yes 51:1 100:1 

E 500 yes 19:1 100:1 

F 500 yes 19:1 100:1 

G 512 yes 14:1 100:1 
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5.2.1. Position Control 

Acceleration and velocity can be calculated by considering the trapezoidal velocity profile 

as shown in Figure 21. It is assumed that the position (dq) and the total time (T) are given in the 

program. 

 

Figure 21: Motion Profile Diagram 

Table 8: Motion Profile Parameter Notation 

Parameter Description 

�" Displacement in encoder counts 

! Acceleration of motor 

  Velocity 

) Total time 

� Acceleration time 

 

By considering the real value of velocity, an expression for the acceleration can be calculated. 

	! � )
% * � � �" � ! 0 �  

1 � 	� � 23
�4%          (7) 

From equation (7) and (8), the applied velocity was found. 

5 � 	� � 23
�4          (8) 
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5.3. PID Gains Setting of WMRA-II 

The PID gains of the servo motors have to be adjusted (tuned) so that the motors follow 

the input signal as closely as possible. The gains of the system determine how well the servo 

system tries to reduce the error. Main purpose behind tuning motors of WMRA-II was to reduce 

the overshoots while improving the accuracy of the motion.  

PID controllers consist of three gain parameters called proportional gain (KP), integral 

gain (KI) and derivative gain (KD). KP value determines the reaction to the current error, KI value 

determines the reaction based on the sum of errors, and KD value determines the reaction based 

on the rate at which the error is changing. Increasing of KI will increase the overshoot and settling 

time. Increasing of KD will decrease both overshoot and settling time. Increasing of KP will 

decrease rise time and steady state error, and will increase overshoot. 

5.3.1. Tuning Procedure 

GalilTools software was used to independently tune all the motors in the robotic arm. 

First PID gains were found by using Galil Tuner toolbox of the software shown in Figure 23. Then 

all the motors were tuned manually by keeping KI values for all the motors at zero. Data were 

recorded for all the motors during both manual and auto tuning. Finally, data were plotted to 

compare the step responses. For both tuning processes 100 counts were given within 100 ms. 

Ethernet connection was used to record the data from the controller board. The step responses 

for motor G are plotted in Figure 22. 
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Figure 22: Step Responses of Motor G  

5.3.2. Scope 

Scope is another toolbox of the GalilTools software. Scope consists of 8-chanels and 

provides real-time visual feedback from the controller in the form of an oscilloscope signal. Eight 

different data types including position, position error, and velocity can be viewed from it.  

5.3.3. Auto Tuning 

The Autotune button, automatically adjusts optimal PID values by selecting axes through 

a series of predetermined movements, which may cause the motor to buzz, and finally shows a 

step response for the specified counts and time in the scope. Since Autotune provides accurate 

results for the default settings in the controller software (for minimum steady state error), manual 

tuning is required to obtain specific performances such as minimum overshoot, minimum settling 

time, etc. 
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Manual Tuning: KP=27, KD=235, KI=0
Auto Tuning: KP=26, KD=200, KI=10
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Figure 23: Galil Tuner 

5.3.4. Manual Tuning 

First the KI value of each motor was set to zero and then the KP and KI values were 

changed slightly to give a step input to the motors. Data were recorded and compared with values 

obtained from the Galil Tuner. It was noted, when the KI was set to zero, the overshoot was 

minimum. Therefore, values obtained from manual tuning were assigned in the low-level 

program. It can be seen from Figure 22, that overshoots and errors have been reduced by 

manual tuning when motor G was commanded to go to 100 encoder counts within 100 ms.  

Since the payload is changing from one task to another, all the motors were tuned for 

three different payloads and the average values were found. Table 9 shows the average gain 

values obtained for three different payloads 1, 2 and 3.5 kg. 

Table 9: PID Gain Parameters of Motors 

Motor KP (proportional gain) KD (derivative gain) KI (integral gain) 

A 35 260 0 

B 5 50 0 

C 5 50 0 

D 5 50 0 

E 31 233 0 

F 30 239 0 

G 27 235 0 

H 2 30 0 
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5.4. C++ Based Programming 

C++ is one of the widely used programming languages at present. The language has 

been around for several decades and has won widespread acceptance because it gives 

programmers maximum control and efficiency. However, in controlling USF WMRA-I, C++ had 

only been used in the dll library functions that were used to physically communicate with the 

robotic arm. Matlab had been used as the programming language for major control tasks, which 

include optimization and calculation of kinematics, as well as for simulation. Various run time 

issues were encountered when the initial programs in Matlab were used to control the WMRA-I. 

Therefore, these Matlab programs were later converted to C++ in search of smooth and reliable 

control of WMRA-I. The concepts of kinematics and the control algorithms were not changed in 

this process. Visual Studio 2008 has been used to write all the C++ programs and its compiler 

was used to compile the program. The architecture of WMRA-II control software consists of three 

main layers: 

1. User interface layer: Sends the required information to the high-level controller using 

an input device (Spaceball, Touch-Screen, joystick, etc.) 

2. High-level control layer: Translates the user input into the input to the low-level 

controller of the output device (WMRA). In this layer, all the kinematic equations and 

optimization algorithms are included. 

3. Low-level control layer: Deals with specific characteristics of the controller board of 

the output device and its communication protocol. 

5.5. High-Level Control Programming 

This includes the main script and several supporting functions that calculate kinematics, 

motion optimization algorithms and trajectory generation algorithms to control the robotic arm. 

The final output from the high-level program should be the accurate position of each and every 

motor for each time step within the trajectory. 
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C++ high-level program for WMRA-I was modified to suit WMRA-II. DH-parameters, 

wheelchair dimensions and joint limit constraints are among the modified parameters in the 

control program. The prototypes of the functions that include the ArmMotion function to 

communicate with the robotic arm were used in the newly developed controller board program 

after modifying them appropriately. 

Table 10: Prototypes of WMRA-I and WMRA-II C++ Functions 

WMRA Function prototype 

WMRA-I void WMRA_park2ready(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qiwc) 

WMRA-II void WMRA_park2ready(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qiwc, 
Galil &g) 

As shown in Table 10, the controller board function parameters for WMRA-II are passed 

by reference to the variable “g” whereas in WMRA-I all the parameters are passed by their 

values. The functions for the controller board were implemented using part of the Galil dll library. 

5.6. C++ Low-Level Control Programming 

ArmMotion function is the function that physically communicates with the robotic arm. It 

calculates necessary kinematic parameters (position, velocity, acceleration, and deceleration) 

based on encoder values and sends those parameters to the controller board for execution. The 

first part of the function consists of initialization of the controller board. During the initialization, 

PID gains are set and the controller board is set for the position tracking mode. The ArmMotion 

function prototype is different for WMRA-I and WMRA-II as indicated in Table 11.  

Table 11: C++ Function Prototypes of ArmMotion Function   

WMRAs Function prototype 

WMRA-I Matrix WMRA_ARM_Motion(int ind, int config, Matrix qo, float dt) 

WMRA-II Matrix WMRA_ARM_Motion(int ind, int config, Matrix qo, float dt, Galil &g) 

  In the low-level layer, C++ functions were created to communicate with all the motors in 

WMRA-II using serial communication. In order to reach the required position at a given time, 



www.manaraa.com

39 
 

motion parameters of each joint should be found for all the motors. Since the controller board 

used in WMRA-II is different from that of WMRA-I, all C++ functions for the motion controller were 

separately developed.  

 Galil motion controller board manufactures have developed a set of C++ communication 

functions. Parts of their codes were used to develop functions for WMRA-II controller board. The 

C++ controller board functions that were developed can be categorized under following major 

categories. 

5.6.1. Establishing the Communication of the Controller Board 

Communication can be achieved using both serial and Ethernet ports. For serial port 

communication, there are two parameters that should be selected to complete the function. 

These are, 

• Com port: A port in the CPU where serial port cable is connected to the peripheral 

device (Galil motion controller). RS-232 is used to serially communicate between 

controller board and the PC. 

• Baud rate: Baud rate is a measure of how fast the data is transferred between an 

instrument and a CPU using serial communication.  

‘Galil g (COM2 19200)’ is an example function call for serial communication. The serial cable is 

connected to communication port 2 and the data transfer rate is selected as 19200 by this 

command. 

Ethernet communication is very useful in data recording since its sampling period is 

higher than that for serial communication. If Ethernet TCP/IP is used to communicate with the 

controller boadr, the IP address, which is a 4-byte number, should be assigned to the Ethernet 

port before starting communication. The last two bytes of the IP address represent the two digit 

number of the controller board. ‘Galil g (124.51.21.83)’ is an example function call for Ethernet 

port communication. 
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5.6.2. Parameter Initialization  

• PID gain settings 

PID gain settings are done under parameter initialization. In this process, proportional, 

integral and derivative gains are set for each and every axis. All eight motors must be tuned for 

PID gains before using these functions. The procedure for finding the gains is explained in 

section 5.3 of this thesis. 

Table 12: C++ Controller Board Function for PID Gains Setting 

Function Prototype Example 

void PID(char PID_motor, float KP_value,float KD_value,float 
KI_value, Galil &g) PID('A',6,64,0, g) 

•  Amplifier gain setting 

This function is used to increase the bandwidth of the amplifier. 

•  Brushed and brushless axes settings 

Both brushed and brushless motors are used in WMRA-II robotic arm. These functions 

are used to set each axis as brushless or brushed. 

5.6.3. Motion Control Functions 

Parameters given by the high-level program are the time steps, the total time to execute 

the task and the corresponding amounts of rotation for all the axes in radians. The low-level 

program should be able to create a motion profile based on the output of the high-level control 

program. Motion control functions developed for this purpose generate a motion profile that is 

sent to the motors in terms of voltages. Motion profiling can be done using both position 

controlling and velocity controlling. 

1. Position control function 

Figure 24 shows a sample velocity profiles for position control. The function developed 

for position control is shown in Table 13. Parameters used in the position control functions are, 

position, velocity, acceleration and deceleration. 
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Figure 24:  Position and Velocity Profiles for Position Control  

 

Table 13: Controller Board Function for Position Control 

Function prototype Description 

void Position_control(char motor,long int 
p_value,long int v_value, long int a_value, Galil 
&g) 

Position_control('A',100000,20000,20000, 
g); 

 

2. Velocity control function 

Parameters used in the velocity control functions are, velocity, acceleration and deceleration.  

5.6.4. Data Record 

These functions are used for obtaining the position, velocity and torque values from the 

motion controller so that they can be used to minimize the position error and to keep track of the 

position, velocity or torque of each axis. Table 14 shows an example of the data record function. 

Table 14: Function Example of Data Record 

Function prototype Example 

float Tell_pos(char motor, Galil &g) Tell_pos('A', g) 



www.manaraa.com

42 
 

5.7. Matlab Low-Level Control Programming 

Matlab low-level control program calculates all the kinematic parameters that the 

corresponding C++ program calculates. However, Matlab uses Component Object Model (COM) 

technology, which enables software components to communicate with each other, to link C++ 

functions to Matlab low-level program. All the parameters calculated must be converted to string 

type from numeric type before assigning them in C++ functions. This makes Matlab low-level 

program longer than the C++ program. Matlab built-in functions were used for converting 

parameter types and creating an instance of COM object.  

5.8. User Interfaces 

5.8.1. Touch-Screen  

Users with different disabilities and individual needs, have to be considered in developing 

assistive systems. Touch-Screen is the GUI that can be used to control the robotic arm in 

teleoperated mode. Touch-Screen GUI implemented using C++ for USF WMRA-II is shown in 

Figure 25. In this interface a seven element vector written to a text file is used to pass the input 

data to the WMRA main program. When one or more buttons are selected, the corresponding 

elements of the vector are changed between 0 and 1, and the corresponding vector is written into 

the text file. The main program reads those values in real-time to update the motion. 

There are two types of buttons used in the Touch-Screen GUI. Command buttons were 

used for Back, Exit and Stop operations. Check buttons were used to create all the other buttons. 

Mouse click events were created to pass the variable values to the main program. Properties of 

each button (size, location, fonts, background color, etc.) were selected from the available 

property editor which allows any required changes in the future. C++ codes related to the Touch-

Screen GUI are given in Appendix B.  
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Figure 25:  Screen Shot of Touch-Screen Control User Interface 

5.8.2. Spaceball  

Figure 26 shows a picture of a Spaceball. This device has three independent force 

sensors and three independent torque sensors to provide 6-DOF to represent an arbitrary 

position of a solid body in space. The Spaceball was originally developed to give 3D designers 

the ability to pan, spin, zoom, rotate and analyze their designs on the computer. Later it was used 

in controlling of robotic arms. By pushing and twisting the Spaceball, the robotic arm can be 

moved in the 3D space.  

A demo program included in the Software Development Kit (SDK) called 3DxTest32 

supplied by the manufacturer of the Spaceball was used to extract special data to be used in the 

WMRA-II control program. When the demo program is opened it creates a window on which the 

Spaceball movement data are written. Then these data are extracted to a text file as characters 

and the C++ WMRA-II program reads these data and converts the characters to numbers that are 

eventually used in the main program.  
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Figure 26: Spaceball and Its Demo Program Window 

When the Spacball is used in Matlab, a separate Matlab demo program has to be used. A 

Matlab application is opened (Figure 27) automatically when the user opens the demo application 

program. The WMRA-II Matlab program should be run from the already opened Matlab command 

window so that both Matlab and Spaceball program share common global variables during the 

operation.  

 

Figure 27: Matlab-Spaceball Program Window 

5.9. Test GUI for WMRA-II 

The joints of the robotic arm have to be operated individually for troubleshooting. When 

GalilTools software is used with Galil two-letter programming language for this purpose, the 

program has to be repeatedly changed for each joint. Therefore, a test GUI was separately 

developed to facilitate testing of the robotic arm operation. Figure 28 shows the developed GUI. 

This GUI avoids above mentioned difficulties in individual movement of joints during 

troubleshooting. In the test GUI, two separate buttons are implemented for clockwise and 
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counterclockwise operation of each motor. Separate group of buttons are implemented to open, 

close and stop the gripper.  

 

Figure 28: Test GUI for WMRA-II 
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Chapter 6:  
 

Testing and Evaluation of WMRA-II  

6.1. Power Usage of the Robotic Arm 

The system specifications for WMRA-II obtained by testing are given in Table 15. 

Table 15: System Specifications of WMRA-II 

Mass of the robotic arm/(kg) 13.63 

Mass of the wheelchair ( not Including power 
supply)/(kg) 

58 

DOF 9 

Maximum reachable height above floor/(m) 1.47 

Designed payload/(kg) 3.85 

Average current draw/(A) 1.75 

Actuator type Brushed and brushless DC servo motors 

Controller board 
Galil motion controller (DMC-2183) with two 
amplifiers for brushed and brushless motors 

 

Power usage of the robotic arm and the whole system determines the battery life. The 24 

V battery system of WMRA-II wheelchair, powers both the robotic arm and the wheelchair. As an 

indication of the power consumption, the electric current was recorded for the two cases in which 

the robotic arm was at rest and while it was running under the conditions given in Table 16. 

Power consumption of WMRA-II is compared with that of WMRA-I in Table 17. 

 

 

 

 



www.manaraa.com

47 
 

Table 16: Power Usage of WMRA-II 

Condition Average Current / (A) 

Idle - Controller only (all the motors off) 0.25 
Holding self weight outstretched 1.25 
Simultaneous movement of joints (without payload) 1.45 
Simultaneous movement of joint with 2 kg payload 1.75 
Lifting 6Kg with joint 1 1.75 

 

It can be noted that WMRA-II consumes less power when it is in the idle state. However, 

batteries of the wheelchair can conserve power by implementing a timer that cuts off the power to 

the controller board when the robotic arm is in the idle state. During operation, WMRA-II 

consumes less power than WMRA-I.   

Table 17: Power Consumption Comparison of WMRA-II with WMRA-I 

6.2. Repeatability and Accuracy of the Robotic Arm 

The accuracy refers to the robot’s ability to accurately position its wrist end at a desired 

target point within its work volume. Repeatability is a statistical term associated with accuracy and 

it describes how a point is repeated. By keeping equal conditions, the robot can be moved to a 

certain point a number of times to calculate the repeatability error. It does not describe the error 

with respect to absolute coordinates. It is a positional deviation from the average of displacement 

[33]. Figure 29 shows a representation of accuracy and repeatability. 

Condition WMRA-II WMRA-I 

Idling 0.25 0.36 

Holding self-weight outstretched 1.25 0.58 

Lifting 6Kg with joint 1 1.75 3.30 
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Figure 29: Representation of Accuracy and Repeatability [33]  

The formulas that calculate accuracy and repeatability of the robotic arm are shown in 

equation (5), (6) and (7). 
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Finally, relative true error was calculated using equation (7). 

EFK1HJ5F�H98F�F99M9 � � NOOPQROSTQPU�VRWPU  (7) 

6.2.1. Methodology 

 WMRA’s are designed to perform daily living activities and therefore they should be 

reliable, accurate and repeatable. As a test of repeatability and accuracy, five positions as shown 

in the Table 18 were selected (without changing the orientation of the end-effector) and the two 

robotic arms were commanded to travel from the same ready position to each target position five 
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times. All the user options such as operation velocity, method of optimization, etc were kept as 

constants for all the trials. All the measurements were made based on the robotic arm base 

coordinate systems (Figure 30) and the data were recorded. Laser pointer was attached to a 

gripper of the arm to measure the vertical distance travelled (Which is z axis w.r.t arm base 

coordinate system) by the dripper. X and y coordinates were drawn on the floor and WMRAs 

were positioned properly on the drawn coordinate. X and Y distances travel by the gripper were 

measured.  

Table 18: Selected Points for the Accuracy and Repeatability Test 

No of points x-y-z Coordinate 

1 (700,200,700) 
2 (200,700,700) 
3 (1000,500,300) 
4 (550,300,900) 

5 (850,950,500) 

 

 

   

Figure 30: Experimental Setup for Repeatability and Accuracy Test 
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Figure 31: Repeatability and Accuracy of WMRA-I and WMRA-II 

According to Figure 31, both WMRA-II and WMRA-I show reasonable repeatability. 

However, WMRA-II always recorded considerably less repeatability and percentage relative error 

than WMRA-I as shown in Table 19 and 20 respectively.  

Table 19: Repeatability Comparison of WMRA-I and WMRA-II 

Coordinate WMRA-I(Average Repeatability) / 
mm 

WMRA-II(Average repeatability) / 
mm 

X 2.69 1.38 
Y 2.03 1.02 
Z 1.92 1.03 

 
 

Table 20: Average Percentage Relative Error of WMRA-I and WMRA-II  

Coordinate WMRA-I(Average % Relative  
error) / % 

WMRA-II(Average % Relative  
error) / % 

X 5.10 4.39 
Y 5.22 4.42 
Z 6.38 5.50 
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According to above results both accuracy and repeatability of WMRA-II are higher than 

those for WMRA-I. Both of the systems were tested using the same C++ control algorithm and 

the same communication protocol (RS-232) was used to communicate with the controller board. 

Main differences are in the controller boards and the motors used in the two robotic arms. 

WMRA-II consists of the Galil motion controller (24 V DC) with two separate driver units for 

brushed and brushless motors and WMRA-I consists of  the JRKERR PIC servo SC controller 

(12V DC) with separate driver unit for each motor. The motors used in WMRA-II are more precise 

than those used in WMRA-I.    

The final accuracy in a robotic arm depends on the control program resolution and the 

measuring system. The mechanical inaccuracies are mainly caused by the backlash in the robotic 

arm joints and backlash in the gear mechanisms of the robotic arm. The measuring system with a 

laser tracker, a level and a ruler with a white board may have caused some errors during the 

measurements.  

6.3. Use of Different Interfaces 

Since this is preliminary testing stage of the WMRA-II, due to safety concerns, the system 

was tested without a user being seated on the wheelchair. Spaceball and Touch-Screen were the 

different interfaces used to run the robotic arm.  

 

Figure 32:  Evaluated User Interfaces: Touch-Screen and Spaceball 



www.manaraa.com

52 
 

6.3.1. Touch-Screen Evaluation 

Touch-Screen is one of the popular and convenient user interface used in assistive 

devices. Its graphical user interface should be simple enough to provide directions to control the 

robotic arm as desired. As mentioned in Chapter 5, it provides buttons indicating directions of 

movement of the end-effector so that the users can clearly visualize and identify which buttons to 

be used to achieve the desired motion. In order to begin the motion, the user should click on the 

proper buttons that provide the required direction of motion and select Run button to move the 

robotic arm. Stop button of the Touch-Screen should be clicked if the user wants to stop the 

motion. An Exit button is provided to exit from the Touch-Screen user interface. 

6.3.1.1. Testing Procedure and Results 

First the Touch-Screen was separately evaluated for three translations and rotations of 

the end-effector using both C++ and Matlab control programs. Then it was tested for combined 

motion of the end-effector such as three translations, two translations and one rotation, etc. It was 

tested for different cases of combined motion with different speeds of the end-effector. The 

robotic arm could be moved successfully to the intended directions. 

6.3.2. Spaceball Evaluation 

For some users who do not have enough dexterity in their finger movement, Touch-

Screen is not a convenient interface to control the robotic arm. Spaceball, which is a device that 

consist of a ball and sensors to detect its 6-DOF motion, can be helpful in such situations (see 

section 5.8.2). By using the Spaceball, the user can separately control three translations and 

three rotation of the gripper. However, the user should be trained properly before using the 

Spaceball to move the robotic arm. Gripper open and close operations cannot be performed 

using the Spaceball. The gripper operation can be programmed to the buttons available on the 

spaceball. 
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6.3.2.1. Testing Procedure and Results 

First, the coordinate system of the gripper was mapped to match the coordinate system 

at the base of the robotic arm. Then the Spaceball could be easily tested for forward, backward, 

left and right motion of the robotic arm. These directions were selected according to conventional 

description of movement of the robotic arm for a user sitting on the wheelchair. 

Sensitivity of the Spaceball motion can be set from the Spaceball software or from the 

twelve-way buttons. Accuracy of the displacement reading of the Spaceball, maximum value for 

each translation and rotation, and the rate of change of the Spaceball movement are important in 

deciding the movement of the robotic arm. Sensitivity of the Spaceball was adjusted using a trial 

and error procedure. Finally, the Spaceball was tested for the robotic arm motion for independent 

translation and rotation. 

It was noticed that the response delay is high when using Matlab program than C++ 

program. This is because both Spacball and Matlab programs share common global variables 

and it will take some time to pass the Spaceball variable to Matlab programs. Also Matlab take 

longer time to interpret the codes. 

6.4. Manipulability Measure of WMRA-II 

Manipulability measure can be used as a criterion to be maximized to place the robotic 

arm in a configuration far from its singular configurations and to ensure dexterous manipulation. 

The method proposed by Yoshikawa [26] was used in this work to calculate the manipulability 

measure. When the manipulator is redundant, infinite solutions exist for the inverse kinematics. In 

this case, criteria are needed in order to extract the best solution to run the robotic arm.  

Manipulability of WMRA-I and WMRA-II were evaluated and compared for several 

positions in the workspace using an already developed Matlab simulation. When both robotic 

arms were in ready position [90, 90, 90, 0,-90, 0], it was found that the manipulability measure for 

WMRA-II is higher than that for WMRA-I. Furthermore, for the selected end-effector positions, 

WMRA-II showed higher manipulability measures during the motion. Figure 33 shows the details 
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of how manipulability measure changed when the end-effector moved from ready position to 

selected positions with respect to wheelchair base frame coordinate system. 

 

 

Figure 33: Manipulability Measure of WMRA-I and WMRA-II Robotic Arms 
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Chapter 7: 
  

Conclusion 

Research carried out in this thesis yielded satisfactory results in controlling and testing an 

assistive robotic wheelchair system (USF WMRA-II) that can be integrated into the everyday life 

of people with disabilities. The outcome of this research can be summarized as follows. 

1. The robotic arm of USF WMRA-II was successfully controlled using not only C++ but 

also Matlab programming languages. 

2. USF WMRA-II was tested in autonomous mode as well as using Touch-Screen and 

Spaceball as convenient user interfaces. It was identified that the Touch-Screen 

control is more satisfactory than the Spaceball control, because, Spaceball requires 

more training and it should be calibrated depending on the disability level of the user. 

Touch-Screen requires minimal or no training and provides clear and simple insight 

to the user. However, motion of the WMRA-I for both Touch-Screen and Spaceball 

was found to be less smooth and less reliable.   

3.  It was found that WMRA-II is more repeatable and accurate in performance than 

WMRA-I.   

4. Manipulability measure of WMRA-II is higher when it is in its ready position. It also 

showed higher manipulability measures for most of the predefined positions.  

5. WMRA-I consumes less power when it is in idle and during the motion. The power 

usage of the system mainly depends on payload on the gripper, type of motors used 

in the arm and the type of the controller board used. When WMRA-II is holding its 

own weight it consumes more power than WMRA-I. This is because weight of the 

WMRA-II is higher than WMRA-I and torque applies on motors are high in WMRA-II. 
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Many improvements can be done to the system to increase the capacity and quality of 

doing ADL tasks. Wheelchair controllers have to be integrated to the control algorithm. So that 

the capability of performing combined motion tasks such as opening a door can be achieved. 

Further force/torque sensors should be added to control the compliance of the system when 

performing tasks like opening a door. User evaluation can be done for ADL tasks. Sensors for 

collision avoidance and autonomous navigation can also integrate to make the system more 

intelligent.  
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Appendix A. C++ Programs 

/* This "new USF WMRA" function SIMULATES the arm going from any position to the ready 
position with ANIMATION. All angles are in Radians.  
The ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]] (Radians). 
ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 -
-> close the figures. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%Modified By: Ana Catalina Torres & Punya A. Basnayaka %%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% June 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "any2ready.h"  
#include "ArmMotion.h"  
#include "DH.h"  
#include "q2T.h"  
#include <time.h> 
using namespace std; 
using namespace math; 
 
void WMRA_any2ready(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qi, Galil &g){ 
Matrix zero(1,1); 
zero.Null(1,1); 
 if (ini==3){ 
  if (arm==1){ 
   try { 
            WMRA_ARM_Motion(ini, 0, zero, 0, g); 
   cout<< "any ini "<<endl; 
   } 
   catch (...) { 
    cout << "Exception 1 occurred"; 
   } 
  } 
  if (vr==1){ 
    
  } 
  if (ml==1){ 
   /*try { 
    WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
   } 
   catch (...) { 
    cout << "Exception 3 occurred"; 
   }*/ 
  } 
  return; 
 } 
 
 // Defining the used conditions: 
 Matrix qd(7,1); 
 float ts, dt, ddt; 
 int n, j; 
 float qd2 [7]= {PI/2, PI/2, 0, PI/2, PI/2, PI/2, 0}; // Final joint angles (Ready 
Position). 
 for ( j = 0 ; j < 7 ; j++ ) { 
  qd(j,0)=qd2[j]; 
 } 
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Appendix A. (Continued) 
  

 
 
ts=10;  // (5 or 10 or 20) Simulation time to move the arm from any position to 

the ready position. 
 n=100;  // Number of time steps. 
 dt=ts/n;  // The time step to move the arm from any position to the ready 
position. 
 
 FILE * fel; 
 fel = fopen("Any2ready.txt","w"); 
 fprintf(fel," qd is: \n\n"); 
 int k; 
 for (j=0;j<qd.RowNo();j++){ 
  for (k=0;k<qd.ColNo();k++){ 
   fprintf(fel," %4.2f ",  qd(j,k)); 
  } 
  fprintf(fel," \n"); 
 } 
 fprintf(fel," \n\n\n"); 
 fprintf(fel," ts is %4.2f ",  ts); 
 fprintf(fel," \n\n\n"); 
 fprintf(fel," n is %d ",  n); 
 fprintf(fel," \n\n\n"); 
 fprintf(fel," dt is %4.2f ",  dt); 
 fprintf(fel," \n\n\n"); 
  
 // Initializing the physical Arm: 
 if (arm==1){ 
  zero.Null(10,1); 
  for ( j = 0 ; j < 9 ; j++ ) { 
   zero(j,0)=qi(j,0); 
  } 
  cout<<"0"; 
  WMRA_ARM_Motion(ini, 2, zero, dt, g); 
  ddt=0; 
  cout<<"1"<<endl;   
 } 
 fprintf(fel," qi is: \n\n"); 
 for (j=0;j<qi.RowNo();j++){ 
  for (k=0;k<qi.ColNo();k++){ 
   fprintf(fel," %4.2f ",  qi(j,k)); 
  } 
  fprintf(fel," \n"); 
 }  
 fprintf(fel," \n\n\n"); 
 
 if (vr==1){ 
 // WMRA_VR_Animation(ini, Tiwc, qi); 
 } 
 
 // Initializing Robot Animation in Matlab Graphics: 
 Matrix DH(1,1); 
 Matrix T01(4,4), T12(4,4), T23(4,4), T34(4,4), T45(4,4), T56(4,4), T67(4,4); 
 Matrix Ti(4,4), Td(4,4); 
   
 if (ml==1){ 
  // Inputting the D-H Parameters in a Matrix form: 
  DH=WMRA_DH(qi); 
   
  // Calculating the transformation matrices of each link:   
  T01 = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2)); 
    T12 = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
  T23 = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2)); 
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Appendix A. (Continued) 
  
  
  

//T4 
  T34 = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
  T45 = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T56 = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T67 = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2)); 
  // Calculating the Transformation Matrix of the initial and desired arm 
positions: 
  Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
  Td=Tiwc*WMRA_q2T(qd); 
 } 
 
 // Check for the shortest route: 
 Matrix diff(7,1); 
 for (j=0;j<7;j++){ 
  diff(j,0)=qd(j,0)-qi(j,0); 
 } 
 for (j=0;j<7;j++){ 
  if (diff(j,0) > PI) { 
   diff(j,0)=diff(j,0)-2*PI; 
  } 
  else if (diff(j,0) < (-PI)) { 
   diff(j,0)=diff(j,0)+2*PI; 
  } 
 } 
 
 fprintf(fel," diff is: \n\n"); 
 for (j=0;j<diff.RowNo();j++){ 
  for (k=0;k<diff.ColNo();k++){ 
   fprintf(fel," %4.2f ",  diff(j,k)); 
  } 
  fprintf(fel," \n"); 
 } 
 fprintf(fel," \n\n\n"); 
 
  diff/=(n); 
 Matrix dq(1,1); 
 dq.Null(9,1); 
 for ( j = 0 ; j < 7 ; j++ ) { 
  dq(j,0)=diff(j,0); 
 } 
 
 fprintf(fel," dq is: \n\n"); 
 for (j=0;j<dq.RowNo();j++){ 
  for (k=0;k<dq.ColNo();k++){ 
   fprintf(fel," %4.2f ",  dq(j,k)); 
  } 
  fprintf(fel," \n"); 
 } 
 fprintf(fel," \n\n\n"); 
  
 // Initialization: 
 Matrix qo(1,1); 
 float tt; 
 qo=qi; 
 tt=0; 
 fprintf(fel," qo is: \n\n"); 
 for (j=0;j<qo.RowNo();j++){ 
  for (k=0;k<qo.ColNo();k++){ 
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Appendix A. (Continued) 
   
   
   

fprintf(fel," %4.2f ",  qo(j,k)); 
  } 
  fprintf(fel," \n"); 
 } 
 fprintf(fel," \n\n\n"); 
 fprintf(fel," tt is %4.2f ",  tt); 
 fprintf(fel," \n\n\n"); 
  
 Matrix qn(1,1); 
 clock_t startt, endt, endf; 
 double timedif;  
 Matrix T1a(1,1), T2a(1,1), T3a(1,1), T4a(1,1), T5a(1,1), T6a(1,1), T7a(1,1); 
 
 while (tt <= (ts-dt)) { 
  // Starting a timer: 
  startt=0; 
  startt=clock()/ CLOCKS_PER_SEC; 
    
  // Calculating the new Joint Angles: 
  qn.Null(9,1); 
  qn=qo+dq; 
 
  fprintf(fel," qn is: \n\n"); 
  for (j=0;j<qn.RowNo();j++){ 
   for (k=0;k<qn.ColNo();k++){ 
    fprintf(fel," %4.2f ",  qn(j,k)); 
   } 
   fprintf(fel," \n"); 
  } 
  fprintf(fel," \n\n\n");   
  fprintf(fel," ddt is %4.2f ",  ddt); 
  fprintf(fel," \n\n\n"); 
   
  // Updating the physical Arm: 
  if (arm==1) { 
   float ddt2=0; 
   ddt2=ddt+dt; 
   if (ddt2>=0.5 || tt>=(ts-dt)){ 
    zero.Null(10,1); 
    for ( j = 0 ; j < 9 ; j++ ) { 
     zero(j,0)=qn(j,0); 
    } 
    cout<<"2"; 
    WMRA_ARM_Motion(2, 1, zero, ddt2, g); 
    cout<<"3"; 
    ddt2=0; 
   } 
   ddt=0; 
   ddt=ddt2; 
  } 
   
  // Updating Virtual Reality Animation: 
  if (vr==1){ 
   //WMRA_VR_Animation(2, Tiwc, qn); 
  } 
   
  // Updating Matlab Animation: 
  if (ml==1){ 
   // Calculating the new Transformation Matrix: 
   T1a = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(qn(0,0))*WMRA_transl(0,0,DH(0,2)); 
  //T2 
  T2a = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(qn(1,0))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
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Appendix A. (Continued) 
   
   
   

T3a= 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(qn(2,0))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
  T4a = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(qn(3,0))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
  T5a = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(qn(4,0))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T6a = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(qn(5,0))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T7a = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(qn(6,0))*WMRA_transl(0,0,DH(6,2)); 
   
  //WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a); 
  } 
 
  // Updating the old values with the new values for the next iteration: 
   
  qo.Null(9,1); 
  qo=qn; 
  tt=tt+dt; 
 
  fprintf(fel," qo is: \n\n"); 
  for (j=0;j<qo.RowNo();j++){ 
   for (k=0;k<qo.ColNo();k++){ 
    fprintf(fel," %4.2f ",  qo(j,k)); 
   } 
   fprintf(fel," \n"); 
  } 
  fprintf(fel," \n\n\n"); 
  fprintf(fel," tt is %4.2f ",  tt); 
  fprintf(fel," \n\n\n"); 
   
  // Pausing for the speed sync: 
  endt=0; 
  endt=clock()/ CLOCKS_PER_SEC; 
  timedif=0; 
  timedif=endt-startt; 
  wait((dt-timedif)); 
 } 
 fclose(fel); 
} 
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Appendix A. (Continued) 
 
 
 
/* This function communicates with the physical USF WMRA system with 9 DOF to get the 
encoder readings and send the commands to be executed. 
The (.H) file and the (.DLL) file that contains the used functions should be in the 
directory containing this program. 
config=0: Set the current encoder readings to zeros. 
config=1: Read the encoder readings from the configuration txt file. 
config=2: Change the configuration file to the initial values provided by (qo), then read 
the encoder readings from the configuration txt file. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%  
%%%%%%%%%%%%%%%%%%%%%Developed by: Punya Basnayaka %%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Feb 2010 %%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "WCD.h"   
#include "ArmMotion.h" 
#include <math.h> 
#include <string> 
#include <iostream> 
#include <sstream> 
#include <stdio.h> 
#include <string.h> 
#include <ctype.h> 
#include <time.h> //if #include<windows.h> is included, there will be error messages 
#include "control.h" 
//#include "C:\Documents and Settings\pbasnaya\Desktop\My 
Research\WMRA2all\functiontest\functiontest\controlt2.h" 
#include "Galil.h" 
using namespace std; 
using namespace math; 
using namespace System; 
 
void sleep(long d) //sleep function takes in ms value 
{ //sleep(1000) sleeps for 1 second 
 clock_t start=clock(); 
 while(clock() - start < d); 
} 
 
Matrix WMRA_ARM_Motion(int ind, int config, Matrix qo, float dt, Galil &g){ 
  
 //extern long * ptr; 
 extern float e2r1, e2r2, e2r3, e2r4, e2r5, e2r6, e2r7, e2r8, e2r9, e2d; 
 long int aa, bb, cc, dd, ee, ff, gg, hh; 
 //long int aa1, bb2, cc3, dd4, ee5, ff6, gg7, hh8; 
 string a1, b1, c1,d1,e1,f1,g1; 
 float  Kp, Kd, Ki; 
 Matrix qn(10,1), qntemp(10,1); 
 Matrix L(1,1); 
    
// Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
 L=WMRA_WCD(); 
  
//The initialization of the Arm library: 
 if (ind==1){   
    
// PID controller gains: 
   
  Brushed_Motor ('A', 1,g); 
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Appendix A. (Continued) 
   

 
 
e2r1=PI/6595000;//a 

  e2r2=PI/5100000;//b 
  e2r3=PI/1800000;//c 
  e2r4=PI/2300000;//d 
  e2r5=PI/2000000;//e 
  e2r6=-PI/2000000;//f 
  e2r7=PI/1500000; //g 
  e2r8=1; // Redwan: change this to forward motion when wheelchair 
controllers are installed (Only when reading the encoders). 
  e2r9=1; // Redwan: change this to rotation motion when wheelchair 
controllers are installed (Only when reading the encoders). 
  e2d =1/100000;//h 
  
// The case when changing the configuration file to qo is required: 
 
  if (config==2){ 
 
// Converting the commanded angles to encoder readings: 
    
   qo(0,0)=qo(0,0)/e2r1; 
   qo(1,0)=qo(1,0)/e2r2; 
   qo(2,0)=qo(2,0)/e2r3; 
   qo(3,0)=qo(3,0)/e2r4; 
   qo(4,0)=qo(4,0)/e2r5; 
   qo(5,0)=qo(5,0)/e2r6; 
   qo(6,0)=qo(6,0)/e2r7; 
   qo(7,0)=qo(7,0)/e2r8; 
   qo(8,0)=qo(8,0)/e2r9; 
   qo(9,0)=0; 
       
// Changing the configuration file to qo: 
   FILE * fid; 
   fid = fopen("configuration.txt","w"); 
   int j; 
   for (j=0;j<7;j++){ 
    fprintf(fid," %10.0f ",qo(j,0)); 
   } 
   fclose (fid); 
   config=1; 
  } 
  g.command("KPH=2"); 
  g.command("KDH=30"); 
  g.command("KIH=0"); 
  g.command("KPA=35"); 
  g.command("KDA=260"); 
  g.command("KIA=0"); 
// This command sets the controller board in postion tracking mode 
   
  Pos_track (g); 
  Decceleration_all (90000, g); 
  Time_constant (0.6, g); 
   
  long int qp[10]; 
 
  qp[0]=qo(0,0); 
  //cout<<"qp[0] = "<<qp[0]<<endl; 
  qp[1]=qo(1,0); 
  //cout<<"qp[1] = "<<qp[1]<<endl; 
  qp[2]=qo(2,0); 
  //cout<<"qp[2] = "<<qp[2]<<endl; 
  qp[3]=qo(3,0); 
  //cout<<"qp[3] = "<<qp[3]<<endl; 
  qp[4]=qo(4,0); 
  //cout<<"qp[4] = "<<qp[4]<<endl; 
  qp[5]=qo(5,0); 
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qp[6]=qo(6,0); 

  //cout<<"qp[6] = "<<qp[6]<<endl; 
  qp[7]=qo(7,0); 
  //cout<<"qp[7] = "<<qp[7]<<endl; 
  qp[8]=qo(8,0); 
  //cout<<"qp[8] = "<<qp[8]<<endl; 
  qp[9]=qo(9,0); 
  cout<<"qp[9] = "<<qp[9]<<endl; 
 
  Define_Position ('A', qo(0,0), g); 
  Define_Position ('B', qo(1,0), g); 
  Define_Position ('C', qo(2,0), g); 
  Define_Position ('D', qo(3,0), g); 
  Define_Position ('E', qo(4,0), g); 
  Define_Position ('F', qo(5,0), g); 
  Define_Position ('G', qo(6,0), g); 
  Define_Position ('H', qo(9,0), g); 
   
 //PID Gains setting 
  
  PID_all( 6,64,0,g); 
   
 aa=Tell_pos('A', g); 
 bb=Tell_pos('B', g); 
 cc=Tell_pos('C', g); 
 dd=Tell_pos('D', g); 
 ee=Tell_pos('E', g); 
 ff=Tell_pos('F', g); 
 gg=Tell_pos('G', g); 
 hh=Tell_pos('H', g); 
 
  long int qc[10]; 
 
  qc[0]=aa; 
  qc[1]=bb; 
  qc[2]=cc; 
  qc[3]=dd; 
  qc[4]=ee; 
  qc[5]=ff; 
  qc[6]=gg; 
  qc[7]=0; 
  qc[8]=0; 
  qc[9]=hh; 
   
  qn(0,0)=qc[0]*e2r1; 
  qn(1,0)=qc[1]*e2r2; 
  qn(2,0)=qc[2]*e2r3; 
  qn(3,0)=qc[3]*e2r4; 
  qn(4,0)=qc[4]*e2r5; 
  qn(5,0)=qc[5]*e2r6; 
  qn(6,0)=qc[6]*e2r7; 
  qn(7,0)=qc[7]*e2r8; 
  qn(8,0)=qc[8]*e2r9; 
  qn(9,0)=qc[9]*e2d;// gripper 
  cout<<"qn(9,0)"<<qn(9,0)<<endl; 
   
  } 
 
// Closing the Arm library: 
 
 else{ 
  if (ind==3){ 
  qn.Null(10,1); 
 cout<<"qn" <<qn<<endl; 
  } 



www.manaraa.com

69 
 

Appendix A. (Continued) 
 
 
 
// Updating the Arm: 
  else { 
 
  if (ind==2){ 
 
   try 
 { 
    long int qin[10]; 
   
 aa=Tell_pos('A', g); 
 bb=Tell_pos('B', g); 
 cc=Tell_pos('C', g); 
 dd=Tell_pos('D', g); 
 ee=Tell_pos('E', g); 
 ff=Tell_pos('F', g); 
 gg=Tell_pos('G', g); 
 hh=Tell_pos('H', g); 
   
 long int qc[10]; 
   
  qc[0]=aa; 
  qc[1]=bb; 
  qc[2]=cc; 
  qc[3]=dd; 
  qc[4]=ee; 
  qc[5]=ff; 
  qc[6]=gg; 
  qc[7]=0; 
  qc[8]=0; 
  qc[9]=hh; 
  cout<<"qc[9] = "<<qc[9]<<endl; 
 
   
  float qt[10]; 
  float qg[1]; 
   qo(0,0)=qo(0,0)/e2r1; 
   qo(1,0)=qo(1,0)/e2r2; 
   qo(2,0)=qo(2,0)/e2r3; 
   qo(3,0)=qo(3,0)/e2r4; 
   qo(4,0)=qo(4,0)/e2r5; 
   qo(5,0)=qo(5,0)/e2r6; 
   qo(6,0)=qo(6,0)/e2r7; 
   qo(7,0)=qo(7,0)/e2r8 ; 
   qo(8,0)=qo(8,0)/e2r9; 
   
   if(qo(9,0)==0) 
   { 
    qo(9,0)=0; 
    qo(9,0)=qo(9,0)+qc[9]; 
 
   } 
   else 
   { 
    if(qo(9,0)==1){ 
   qo(9,0)=-qo(9,0)*100000 ; 
   qo(9,0)=qo(9,0)+qc[9]; 
    } 
    if (qo(9,0)==-1){ 
    qo(9,0)=-qo(9,0)*100000 ; 
   qo(9,0)=qo(9,0)+qc[9]; 
    } 
 
   } 
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cout<<"qg[1] =  "<<qo(9,0)<<endl; 
 
  float dq[8]; 
   
   dq[0]=qo(0,0)-qc[0]; 
   dq[1]=qo(1,0)-qc[1]; 
   dq[2]=qo(2,0)-qc[2]; 
   dq[3]=qo(3,0)-qc[3]; 
   dq[4]=qo(4,0)-qc[4]; 
   dq[5]=qo(5,0)-qc[5]; 
   dq[6]=qo(6,0)-qc[6]; 
   dq[7]=qo(9,0)-qc[9]; 
   
 
 long int dq1[8]; 
 
 
   dq1[0]=abs(dq[0]); 
   dq1[1]=abs(dq[1]); 
   dq1[2]=abs(dq[2]); 
   dq1[3]=abs(dq[3]); 
   dq1[4]=abs(dq[4]); 
   dq1[5]=abs(dq[5]); 
   dq1[6]=abs(dq[6]); 
   dq1[7]=abs(dq[7]); 
    
   cout<<"dq[7] =  "<<dq[7]<<endl; 
 
   
   long int dq01[8]; 
   long int dq01t[8]; 
   long int qddo1[8]; 
    
   dq01t[7]=dq1[7]/2; 
 
    
   qddo1[7]=5000; 
    
  if (abs(dq[0])>25000) 
  { 
   dq01[0]=170000; 
   qddo1[0]=75000; 
  } 
  else{ 
   dq01[0]=2*abs(dq[0])/0.3;; 
   qddo1[0]=2*abs(dq[0])/0.7; 
 
  } 
  cout<<"dq01[0] =  "<<dq01[0]<<endl; 
  cout<<"qddo1[0]= "<<qddo1[0]<<endl; 
  /////////////// 
 
  if (abs(dq[1])>25000) 
  { 
   dq01[1]=170000; 
   qddo1[1]=75000; 
  } 
  else{ 
   dq01[1]=2*abs(dq[1])/0.3;; 
   qddo1[1]=2*abs(dq[1])/0.7; 
 
  } 
  cout<<"dq01[1] =  "<<dq01[1]<<endl; 
  cout<<"qddo1[1]= "<<qddo1[1]<<endl; 
  /////////////////////// 
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if (abs(dq[2])>25000) 

  { 
   dq01[2]=170000; 
   qddo1[2]=75000; 
  } 
  else{ 
   dq01[2]=2*abs(dq[2])/0.3;; 
   qddo1[2]=2*abs(dq[2])/0.7; 
 
  } 
  cout<<"dq01[2] =  "<<dq01[2]<<endl; 
  cout<<"qddo1[2]= "<<qddo1[2]<<endl; 
  /////////////////// 
  if (abs(dq[3])>25000) 
  { 
   dq01[3]=170000; 
   qddo1[3]=75000; 
  } 
  else{ 
   dq01[3]=2*abs(dq[3])/0.3;; 
   qddo1[3]=2*abs(dq[3])/0.7; 
 
  } 
  cout<<"dq01[3] =  "<<dq01[3]<<endl; 
  cout<<"qddo1[3]= "<<qddo1[3]<<endl; 
  ///////////////////// 
 
  if (abs(dq[4])>25000) 
  { 
   dq01[4]=170000; 
   qddo1[4]=75000; 
  } 
  else{ 
   dq01[4]=2*abs(dq[4])/0.3;; 
   qddo1[4]=2*abs(dq[4])/0.7; 
 
  } 
  cout<<"dq01[4] =  "<<dq01[4]<<endl; 
  cout<<"qddo1[4]= "<<qddo1[4]<<endl; 
  ////////////////// 
  if (abs(dq[5])>25000) 
  { 
   dq01[5]=170000; 
   qddo1[5]=75000; 
  } 
  else{ 
   dq01[5]=2*abs(dq[5])/0.3;; 
   qddo1[5]=2*abs(dq[5])/0.7; 
 
  } 
  cout<<"dq01[5] =  "<<dq01[5]<<endl; 
  cout<<"qddo1[5]= "<<qddo1[5]<<endl; 
  ////////////////// 
  if (abs(dq[6])>25000) 
  { 
   dq01[6]=170000; 
   qddo1[6]=75000; 
  } 
  else{ 
   dq01[6]=2*abs(dq[6])/0.3;;  
   qddo1[6]=2*abs(dq[6])/0.7; 
 
  } 
  cout<<"dq01[6] =  "<<dq01[6]<<endl; 
 



www.manaraa.com

72 
 

Appendix A. (Continued) 
  
  
 
int j; 
FILE * fid1; 
fid1 = fopen("arm1.txt","a"); 
fprintf(fid1," \n\n\n"); 
  fprintf(fid1," qc[3] is %4.2f ",  qc[3]); 
  fprintf(fid1," \n\n\n"); 
 
 
 
  Position_control('a',qo(0,0),dq01[0],qddo1[0], g); 
    
  Position_control('b',qo(1,0),dq01[1],qddo1[1], g); 
    
  Position_control('c',qo(2,0),dq01[2],qddo1[2], g); 
    
  Position_control('d',qo(3,0),dq01[3],qddo1[3], g); 
    
  Position_control('e',qo(4,0),dq01[4],qddo1[4], g); 
    
  Position_control('f',qo(5,0),dq01[5],qddo1[5], g); 
  //Position_control('g',qo(6,0),dq01[6],qddo1[6], g);  
  Position_control('h',qo(9,0),dq01t[7],5000, g);  
    
  
 aa=Tell_pos('A', g); 
 bb=Tell_pos('B', g); 
 cc=Tell_pos('C', g); 
 dd=Tell_pos('D', g); 
 ee=Tell_pos('E', g); 
 ff=Tell_pos('F', g); 
 gg=Tell_pos('G', g); 
 hh=Tell_pos('H', g); 
   
 
  qc[0]=aa; 
  qc[1]=bb; 
  qc[2]=cc; 
  qc[3]=dd; 
  qc[4]=ee; 
  qc[5]=ff; 
  qc[6]=gg; 
  qc[7]=0; 
  qc[8]=0; 
  qc[9]=hh; 
   
  qn(0,0)=qc[0]*e2r1; 
  qn(1,0)=qc[1]*e2r2; 
  qn(2,0)=qc[2]*e2r3; 
  qn(3,0)=qc[3]*e2r4; 
  //cout<<"qn(3,0) = "<<qn(3,0)<<endl; 
  qn(4,0)=qc[4]*e2r5; 
  qn(5,0)=qc[5]*e2r6; 
  qn(6,0)=qc[6]*e2r7; 
  qn(7,0)=qc[7]*e2r8; 
  qn(8,0)=qc[8]*e2r9; 
  qn(9,0)=qc[9]*e2d; 
  cout <<"qn"<<qn<<endl; 
  fprintf(fid1," \n\n\n"); 
  fprintf(fid1," qn(3,0) is %4.2f ", qn(3,0)); 
  fprintf(fid1," \n\n\n"); 
  fclose(fid1); 
  } 
 catch(string e) 
 { 
  cout << e; 
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} 
 
  } 
  } 
  } 
   
   
 return qn; 
} 
 

 } 

/* This function uses a 3rd order Polynomial with a Blending factor to find a smooth 
trajectory points of a variable "q" along a streight line, given the initial and final 
variable values and the number of trajectory points. 
The output is the variable position. 
See Eq. 7.18 page 210 of Craig Book 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%Modified by: Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
#include "matrix.h"  
#include "BPolynomial.h"  
using namespace std; 
using namespace math; 
 
Matrix WMRA_BPolynomial(float qi, float qf, float n){ 
 Matrix qtb(2,1); 
 // Blending Factor: 
 int b; 
 b=5; 
 // Initializing the time: 
 float tt, tf, dt, qddb, tb, qdb, qb; 
 float a01, a11, a21, a31, a41, a51, a02, a12, a22, a32, a42, a52; 
 int i; 
 tt=0; 
 tf=abs(qf-qi); 
 dt=tf/(n-1); 
  
 if (tf > 0.001){ 
  // Blending procedure: 
  // Time, position, velocity, and acceleration of the variable at the first 
blending point: 
  qddb=b*4*(qf-qi)/pow(tf,2); 
  tb=tf/2-sqrt(pow(qddb,2)*pow(tf,2)-4*qddb*(qf-qi))/abs(2*qddb); 
  qdb=qddb*tb; 
  qb=qi+qddb*pow(tb,2)/2; 
  // Calculating the polynomial factors at the first blending point: From 
Eq.7.18 page 210 of Craig Book 
  a01=qi; 
  a11=0; 
  a21=0.5*qddb; 
  a31=(20*(qb-qi)-8*qdb*tb-2*qddb*pow(tb,2))/(2*pow(tb,3)); 
  // a41=(30*(qi-qb)+14*qdb*tb+qddb*pow(tb,2))/(2*pow(tb,4)); % Uncomment 
for 5th order polynomial. 
  // a51=(12*(qb-qi)-6*qdb*tb)/(2*pow(tb,5)); % Uncomment for 5th order 
polynomial. 
  // Calculating the polynomial factors at the second blending point: From 
Eq.7.18 page 210 of Craig Book 
  a02=qb+qdb*(tf-2*tb); 
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a12=qdb; 

  a22=-0.5*qddb; 
  a32=(20*(qf-a02)-12*a12*tb+2*qddb*pow(tb,2))/(2*pow(tb,3)); 
  // a42=(30*(a02-qf)+16*a12*tb-qddb*pow(tb,2))/(2*pow(tb,4)); % Uncomment 
for 5th order polynomial 
  // a52=(12*(qf-a02)-6*a12*tb)/(2*pow(tb,5)); % Uncomment for 5th order 
polynomial. 
 } 
  
 // Calculating the intermediate joint angles along the trajectory from the initial 
to the final position: 
 float *qttemp; 
 qttemp = new float[n]; 
 for (i=0; i<n; i++){ 
  if (tf<=0.001){ 
   qttemp[i]=qi; 
  } 
  else if (tt<=tb){ 
   qttemp[i]=a01+a11*tt+a21*pow(tt,2)+a31*pow(tt,3); 
//+a41*pow(tt,4)+a51*pow(tt,5); // Uncomment before "+a41" for 5th order polynomial. 
  } 
  else if (tt>=(tf-tb)){ 
   qttemp[i]=a02+a12*(tt+tb-tf)+a22*pow((tt+tb-tf),2)+a32*pow((tt+tb-
tf),3); //+a42*pow((tt+tb-tf),4)+a52*pow((tt+tb-tf),5); // Uncomment before "+42" for 5th 
order polynomial. 
  } 
  else { 
   qttemp[i]=qb-qdb*(tb-tt); 
  } 
  tt = tt + dt; 
 }     
 qtb.SetSize(n,1); 
 for (i=0; i < n; i++){ 
  qtb(i,0) = qttemp[i]; 
 } 
 delete [] qttemp;  
 return qtb; 

} 

 

 

/* This function is to stop the arm if it is moving towards a collision with itself, the 
wheelchair, or the human user. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%Modified By:Ana Catalina Torres%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "Collide.h"  
#include "WCD.h"   
using namespace std; 
using namespace math; 
 
Matrix WMRA_collide(Matrix dqi, Matrix T01, Matrix T12, Matrix T23, Matrix T34, Matrix 
T45, Matrix T56, Matrix T67){ 
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Matrix L(1,1); 
 L=WMRA_WCD(); 
 
 // Collision Conditions: 
 int gr; 
 Matrix dq(1,1); 
 gr=100-L(0,3)-L(0,4); // The ground buffer surface. 
 dq=dqi; 
 
 // 1- Collision of frame 3 using T03: 
 Matrix T03(1,1); 
 T03=T01*T12*T23; 
 // Collision with the ground: 
 if (T03(2,3) <= gr){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair's front left side: 
 if (T03(0,3) >= 450 && T03(1,3) <= -150){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair's rear left side: 
 if (T03(0,3) <= 450 && T03(1,3) <= 100){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair's rear left wheel: 
 if (T03(0,3) <= 0 && T03(1,3) <= 100 && T03(2,3) <= 120){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 
 // 2- Collision of frame 4 using T04: 
 Matrix T04(1,1); 
 T04=T03*T34; 
 // Collision with the ground: 
 if (T04(2,3) <= gr){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair's front left side: 
 if (T04(0,3) <= 450 && T04(0,3) >= -100 && T04(1,3) <= 0){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair's rear left side: 
 if (T04(0,3) <= -100 && T04(1,3) <= 100){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair's rear left wheel: 
 if (T04(0,3) <= -100 && T04(1,3) <= 100 && T04(2,3) <= 120){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 
 // 3- Collision of frame 5 using T05: 
 Matrix T05(1,1); 
 T05=T04*T45; 
 // Collision with the ground: 
 if (T05(2,3) <= gr){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
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if (T05(0,3) <= -100 && T05(0,3) >= -550 && T05(1,3) <= 150){ 

  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair driver's lap: 
 if (T05(0,3) <= 400 && T05(0,3) >= -100 && T05(1,3) <= 0 && T05(2,3) <= 470){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair's battery pack: 
 if (T05(0,3) <= -430 && T05(0,3) >= -630 && T05(1,3) <= 100 && T05(2,3) <= 50){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 
 // 4- Collision of frame 7 using T07: 
 Matrix T07(1,1); 
 T07=T05*T56*T67; 
 // Collision with the ground: 
 if (T07(2,3) <= gr){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair driver's left shoulder: 
 if (T07(0,3) <= -50 && T07(0,3) >= -600 && T07(1,3) <= 200){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair driver's lap: 
 if (T07(0,3) <= 450 && T07(0,3) >= -50 && T07(1,3) <= 50 && T07(2,3) <= 520){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 // Collision with the wheelchair's battery pack: 
 if (T07(0,3) <= -480 && T07(0,3) >= -680 && T07(1,3) <= 50 && T07(2,3) <= 100){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 
 // 5- Collision of the arm and itself using T37: 
 Matrix T37(1,1); 
 T37=T34*T45*T56*T67; 
 // Collision between the forearm and the upper arm: 
 if (T37(0,3) <= 170 && T37(0,3) >= -170 && T37(1,3) >= -100 && T37(2,3) <= 0){ 
  dq=dqi; 
  dq*=(-0.01); 
 } 
 return dq; 

} 

/* This function gives the WMRA's errors from the current position to the required 
trajectory position. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%Modified By:Ana Catalina Torres%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "Delta.h"  
using namespace std; 
using namespace math; 
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Matrix WMRA_delta(Matrix Tid, Matrix Tdd){ 
 
 Matrix delta(6,1), ep(3,1), eo(3,1); 
 int i,j; 
 for (i=0; i < 3; i++){ 
  ep(i,0) = Tdd(i,3)-Tid(i,3); 
 } 
  
 vector temp3 (0, 0, 0); 
 for (j=0; j<3; j++){ 
  vector temp1 (Tid(0,j), Tid(1,j), Tid(2,j)); 
  vector temp2 (Tdd(0,j), Tdd(1,j), Tdd(2,j)); 
  vector crossed = crossProduct (temp1, temp2); 
  temp3.x=temp3.x+crossed.x; 
  temp3.y=temp3.y+crossed.y; 
  temp3.z=temp3.z+crossed.z; 
 } 
 eo(0,0)=temp3.x; 
 eo(1,0)=temp3.y; 
 eo(2,0)=temp3.z; 
 eo*=(0.5); 
 
 // delta definition 
 for (i=0;i<3;i++){ 
  delta(i,0)=ep(i,0);  
 } 
 for (i=3;i<6;i++){ 
  delta(i,0)=eo(i-3,0); 
 } 
 
/*eo=0.5*( cross(Ti(1:3,1),Td(1:3,1)) + cross(Ti(1:3,2),Td(1:3,2)) + 
cross(Ti(1:3,3),Td(1:3,3)) );   
From equation 17 on page 189 of (Robot Motion Planning and Control) Book by Micheal Brady 
et al. Taken from the paper (Resolved-Acceleration Control of Mechanical Manipulators) By 
John Y. S. Luh et al.*/ 
 return delta; 

} 

 

 

/* This function gives the DH-Parameters matrix to be used in the program.  
Modifying the parameters on this file is sufficient to change these dimention in all 
related programs. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%Modified By:Ana Catalina Torres%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "DH.h"   
 
using namespace math; 
using namespace std; 
 
Matrix WMRA_DH(Matrix q){ 
  
 Matrix DH1(7,4); 
 
 



www.manaraa.com

78 
 

Appendix A. (Continued) 
 
 
 
//Inputting the D-H Parameters in a Matrix form, dimensions are in millimeters and 
radians: 
 
// Dimentions based on the actual physical arm: 
 float DHtemp[7][4]={{-PI/2, 0, 102,  q(0,0)}, 
     { PI/2, 0, 133,  q(1,0)},   
     {-PI/2, 0,  502,  q(2,0)}, 
     { PI/2, 0,  90,  q(3,0)}, 
     {-PI/2, 0,  375,  q(4,0)}, 
     { PI/2, 0,   0,   q(5,0)}, 
     {-PI/2, 0, 161+143, q(6,0)}}; 
         
// Dimentions based on the Virtual Reality arm model: 
/*  float DH[7][4]={{-PI/2, 0, 109.72, q(0,0)}, 
     { PI/2, 0, 118.66, q(1,0)},   
     {-PI/2, 0, 499.67, q(2,0)}, 
     { PI/2, 0, 121.78, q(3,0)}, 
     {-PI/2, 0, 235.67, q(4,0)}, 
     { PI/2, 0,   0,    q(5,0)}, 
     {-PI/2, 0, 276.68, q(6,0)}}; 
*/ 
 int i,j; 
 for (j=0; j < 4; j++){ 
  for (i=0; i < 7; i++){ 
   DH1(i,j) = DHtemp[i][j];     
  } 
 } 
 return DH1; 
} 

 

/* This function gives the Jacobian Matrix and its determinant based on frame  
0 of the new USF WMRA, given the Transformation Matrices of each link. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%Modified By:Ana Catalina Torres%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"  
#include "vector.h" 
#include "J07.h" 
 
using namespace std; 
using namespace math; 
 
void WMRA_J07(Matrix T1, Matrix T2, Matrix T3, Matrix T4, Matrix T5, Matrix T6, Matrix 
T7, Matrix& J0, float& detJ0 ){ 
 Matrix T(4,4), J0temp(6,6), J0trans(7,6); 
 T.Unit(4); 
 J0.SetSize(6,7); 
 J0(0,6) = -T(0,0)*T(1,3)+T(1,0)*T(0,3); 
 J0(1,6) = -T(0,1)*T(1,3)+T(1,1)*T(0,3); 
 J0(2,6) = -T(0,2)*T(1,3)+T(1,2)*T(0,3); 
 J0(3,6) = T(2,0); 
 J0(4,6) = T(2,1); 
 J0(5,6) = T(2,2); 
 
 T = T7 * T; 
// cout << "\nT is:\n" << T << endl; 
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J0(0,5) = -T(0,0)*T(1,3)+T(1,0)*T(0,3); 

 J0(1,5) = -T(0,1)*T(1,3)+T(1,1)*T(0,3); 
 J0(2,5) = -T(0,2)*T(1,3)+T(1,2)*T(0,3); 
 J0(3,5) = T(2,0); 
 J0(4,5) = T(2,1); 
 J0(5,5) = T(2,2); 
 
 T = T6 * T; 
// cout << "\nT is:\n" << T << endl; 
 
 J0(0,4) = -T(0,0)*T(1,3)+T(1,0)*T(0,3); 
 J0(1,4) = -T(0,1)*T(1,3)+T(1,1)*T(0,3); 
 J0(2,4) = -T(0,2)*T(1,3)+T(1,2)*T(0,3); 
 J0(3,4) = T(2,0); 
 J0(4,4) = T(2,1); 
 J0(5,4) = T(2,2); 
 
 T = T5 * T; 
// cout << "\nT is:\n" << T << endl; 
 
 J0(0,3) = -T(0,0)*T(1,3)+T(1,0)*T(0,3); 
 J0(1,3) = -T(0,1)*T(1,3)+T(1,1)*T(0,3); 
 J0(2,3) = -T(0,2)*T(1,3)+T(1,2)*T(0,3); 
 J0(3,3) = T(2,0); 
 J0(4,3) = T(2,1); 
 J0(5,3) = T(2,2); 
 
 T = T4 * T; 
// cout << "\nT is:\n" << T << endl; 
 
 J0(0,2) = -T(0,0)*T(1,3)+T(1,0)*T(0,3); 
 J0(1,2) = -T(0,1)*T(1,3)+T(1,1)*T(0,3); 
 J0(2,2) = -T(0,2)*T(1,3)+T(1,2)*T(0,3); 
 J0(3,2) = T(2,0); 
 J0(4,2) = T(2,1); 
 J0(5,2) = T(2,2); 
 
 T = T3 * T; 
// cout << "\nT is:\n" << T << endl; 
 
 J0(0,1) = -T(0,0)*T(1,3)+T(1,0)*T(0,3); 
 J0(1,1) = -T(0,1)*T(1,3)+T(1,1)*T(0,3); 
 J0(2,1) = -T(0,2)*T(1,3)+T(1,2)*T(0,3); 
 J0(3,1) = T(2,0); 
 J0(4,1) = T(2,1); 
 J0(5,1) = T(2,2); 
 
 T = T2 * T; 
// cout << "\nT is:\n" << T << endl; 
 J0(0,0) = -T(0,0)*T(1,3)+T(1,0)*T(0,3); 
 J0(1,0) = -T(0,1)*T(1,3)+T(1,1)*T(0,3); 
 J0(2,0) = -T(0,2)*T(1,3)+T(1,2)*T(0,3); 
 J0(3,0) = T(2,0); 
 J0(4,0) = T(2,1); 
 J0(5,0) = T(2,2); 
 
 T = T1 * T; 
// cout << "\nT is:\n" << T << endl; 
 J0temp.Null(6,6); 
 int i, j;  
 for ( i=0 ; i < 3 ; i++ ) { 
  for ( j = 0 ; j < 3 ; j++ ) { 
   J0temp(i,j)=T(i,j); 
  } 
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} 
 for ( i=3 ; i < 6 ; i++ ) { 
  for ( j = 3 ; j < 6 ; j++ ) { 
   J0temp(i,j)=T(i-3,j-3); 
  } 
 } 
  
 J0 = J0temp * J0; 
 J0trans = ~J0; 
 J0temp = J0 * J0trans; 
 detJ0= sqrt(J0temp.Det()); 
} 

 

 

/* This function gives the WMRA's base Jacobian Matrix based on the ground frame, given 
the Wheelchair orientation angle about the z axis. 
Dimentions are as supplies, angles are in radians. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "WCD.h" 
#include "matrix.h" 
#include "Jga.h" 
using namespace std; 
using namespace math; 
 
Matrix WMRA_Jga(int ind, float p, float X, float Y){ 
 
 Matrix Jga(6,2); 
 Matrix L(1,1); 
 // Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
 L=WMRA_WCD(); 
 int i; 
 // Deciding if the motion is in reference to the arm base (1) or the wheel axle 
center (0): 
 if (ind==0){ 
  for (i=1; i<4;i++){ 
   L(0,i)=0; 
  } 
 } 
  
 // Calculating the Jacobian: 
 Matrix Jtemp1(6,6),Jtemp2(6,2),Jtemp3(2,2); 
 Jtemp1.Unit(6); 
 Jtemp1(0,5)=-(X*sin(p)+Y*cos(p)); 
 Jtemp1(1,5)=X*cos(p)-Y*sin(p); 
 Jtemp2.Null(6,2); 
 Jtemp2(0,0)=cos(p)+2*(L(0,1)*sin(p)+L(0,2)*cos(p))/L(0,0); 
 Jtemp2(0,1)=cos(p)-2*(L(0,1)*sin(p)+L(0,2)*cos(p))/L(0,0); 
 Jtemp2(1,0)=sin(p)-2*(L(0,1)*cos(p)-L(0,2)*sin(p))/L(0,0); 
 Jtemp2(1,1)=sin(p)+2*(L(0,1)*cos(p)-L(0,2)*sin(p))/L(0,0); 
 Jtemp2(5,0)=-2/L(0,0); 
 Jtemp2(5,1)=2/L(0,0); 
 Jtemp2*=(L(0,4)/2); 
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Jtemp3(0,0)=1; 

 Jtemp3(0,1)=-L(0,0)/(2*L(0,4)); 
 Jtemp3(1,0)=1; 
 Jtemp3(1,1)=L(0,0)/(2*L(0,4)); 
 
 Jga = Jtemp1 * Jtemp2 * Jtemp3; 
 return Jga; 

} 

/* This function gives the joint limit vector to be used in the program.  
Modifying the parameters on this file is sufficient to change these limits in all related 
programs. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "Jlimit.h"  
using namespace std; 
using namespace math; 
 
void WMRA_Jlimit(Matrix& qmin, Matrix& qmax){ 
  
 float qmintemp[7]= {-170*PI/180,-170*PI/180,-170*PI/180,-170*PI/180,-170*PI/180,-
79*PI/180,-200*PI/180}; 
 float qmaxtemp[7] = 
{170*PI/180,170*PI/180,170*PI/180,170*PI/180,170*PI/180,79*PI/180,200*PI/180}; 
 int i; 
 for (i=0; i < 7; i++){ 
  qmin(0,i) = qmintemp[i]; 
  qmax(0,i) = qmaxtemp[i]; 
 } 

} 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "Linear.h" 
using namespace std; 
using namespace math; 
 
Matrix WMRA_Linear(float qi, float qf, float n){ 
 Matrix qt(2,1); 
 int i; 
 float dq; 
 dq =(qf-qi)/(n-1); 
 
 float *qttemp; 
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qttemp = new float[n]; 

 for (i=1; i<n+1; i++){ 
  qttemp[i-1]=qi+dq*(i-1); 
 } 
 
 qt.SetSize(n,1); 
 for (i=0; i < n; i++){ 
  qt(i,0) = qttemp[i]; 
 } 
 delete [] qttemp;  
 
 return qt; 
} 

 

/* This "new USF WMRA" script SIMULATES the WMRA system with ANIMATION and plots for 9 
DOF. All angles are in Radians. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres & Punya A.Basnayaka%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ 
 
#include "matrix.h" 
#include "var_included.h" 
#include "any2ready.h" 
#include "ArmMotion.h" 
#include "BPolynomial.h" 
#include "Collide.h" 
#include "Delta.h" 
#include "DH.h" 
#include "J07.h" 
#include "Jga.h" 
#include "Jlimit.h" 
#include "Linear.h" 
#include "Opt.h" 
#include "p2T.h" 
#include "plots2.h" 
#include "park2ready.h"  
#include "Polynomial.h" 
#include "q2T.h" 
#include "ready2any.h" 
#include "ready2park.h" 
#include "Rotx.h" 
#include "Roty.h" 
#include "Rotz.h" 
#include "sign.h" 
#include "T2rpy.h" 
#include "Tall.h" 
#include "Traj.h" 
#include "Transl.h" 
#include "w2T.h" 
#include "WCD.h" 
#include <math.h> 
#include <time.h> 
#include <iostream> 
#include <fstream> 
#include <tchar.h> 
#include <string.h> 
 
using namespace std; 
using namespace math; 
using namespace System; 
using namespace System::Windows::Forms; 
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using namespace System::Drawing; 
using namespace System::ComponentModel; 
using namespace System::Collections; 
using namespace System::Data; 
#define PI 3.14159265 
#define d2r PI/180 //Conversions from Degrees to Radians. 
#define r2d 180/PI //Conversions from Radians to Degrees. 
// Creating an intnce of object to be used in all the programs 
static Galil g("COM4 19200"); 
int main(){ 
 Matrix L(1,1); 
 // Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
 L=WMRA_WCD(); 
 exitvar=0; 
 // User input prompts: 
 int choice000, choice00000, choice0000, choice5, choice50, choice500, choice0, 
choice00, choice1, choice10, choice2, choice3, choice4, choice6, choice7, choice8; 
 int WCA, coord, cart, optim, JLA, JLO, cont, trajf, vr, ml, arm, ini, plt; 
 int j, k; 
 int i; 
 int port1, ts; 
 float v; 
 Matrix Td(4,4), Vd(3,1), qi(7,1), WCi(3,1); 
 
topchoice:;    
 cout << "\n Choose what to control: \n   For combined Wheelchair and Arm control, 
press '1',\n   For Arm only control, press '2',\n   For Wheelchair only control, press 
'3'. \n\n "; 
 cin >> choice000; 
 if (choice000==2){ 
  WCA=2; 
top1:; 
  cout << "\n Choose whose frame to base the control on: \n   For Ground 
Frame, press '1', \n   For Wheelchair Frame, press '2', \n   For Gripper Frame, press 
'3'. \n\n "; 
  cin >> choice00000; 
  if (choice00000==2){ 
   coord=2; 
  } 
  else if (choice00000==3){ 
   coord=3; 
  } 
  else if (choice00000==1){ 
   coord=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top1; 
  } 
top2:; 
  cout << "\n Choose the cartesian coordinates to be controlled: \n   For 
Position and Orientation, press '1', \n   For Position only, press '2'. \n\n "; 
  cin >> choice0000; 
  if (choice0000==2){ 
   cart=2; 
  } 
  else if (choice0000==1) { 
   cart=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top2; 
  } 
top3:; 
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cout << "\n Please enter the desired optimization method: (1= SR-I & WLN, 2= P-I & WLN, 
3= SR-I & ENE, 4= P-I & ENE) \n\n "; 
  cin >> choice5; 
  if (choice5==2){ 
   optim=2; 
  } 
  else if (choice5==3){ 
   optim=3; 
  } 
  else if (choice5==4){ 
   optim=4; 
  } 
  else if (choice5==1){ 
   optim=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top3; 
  } 
top4:; 
  cout << "\n Do you want to include Joint Limit Avoidance? (1= Yes, 2= No) 
\n\n "; 
  cin >> choice50; 
  if (choice50==2){ 
   JLA=0; 
  } 
  else if (choice50==1){ 
   JLA=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top4; 
  } 
top5:; 
  cout << "\n Do you want to include Joint Limit/Velocity and Obstacle 
Safety Stop? (1= Yes, 2= No) \n\n "; 
  cin >> choice500; 
  if (choice500==2){ 
   JLO=0; 
  } 
  else if (choice500==1){ 
   JLO=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top5; 
  } 
 } 
 else if (choice000==3){ 
  WCA=3; 
top6:; 
  cout << "\n Choose whose frame to base the control on: \n   For Ground 
Frame, press '1', \n   For Wheelchair Frame, press '2'. \n\n "; 
  cin >> choice00000; 
  if (choice00000==2){ 
   coord=2; 
  } 
  else if (choice00000==1){ 
   coord=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top6; 
  } 
top7:; 
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cout << "\n Do you want to include Joint Limit/Velocity and Obstacle Safety Stop? (1= 
Yes, 2= No) \n\n "; 
  

cin >> choice500; 
  if (choice500==2){ 
   JLO=0; 
  } 
  else if (choice500==1){ 
   JLO=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top7; 
  } 
   
  cart=2; 
  optim=0; 
  JLA=0; 
  } 
 else if (choice000==1) { 
  WCA=1; 
top8:; 
  cout << "\n Choose whose frame to base the control on: \n   For Ground 
Frame, press '1', \n   For Wheelchair Frame, press '2', \n   For Gripper Frame, press 
'3'. \n\n "; 
  cin >> choice00000; 
  if (choice00000==2){ 
   coord=2; 
  } 
  else if (choice00000==3){ 
   coord=3; 
  } 
  else if (choice00000==1){ 
   coord=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top8; 
  } 
top9:; 
  cout << "\n Choose the cartesian coordinates to be controlled: \n   For 
Position and Orientation, press '1', \n   For Position only, press '2'. \n\n "; 
  cin >> choice0000; 
  if (choice0000==2){ 
   cart=2; 
  } 
  else if (choice0000==1){ 
   cart=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top9; 
  } 
top10:; 
  cout << "\n Please enter the desired optimization method: (1= SR-I & WLN, 
2= P-I & WLN, 3= SR-I & ENE, 4= P-I & ENE) \n\n "; 
  cin >> choice5; 
  if (choice5==2){ 
   optim=2; 
  } 
  else if (choice5==3){ 
   optim=3; 
  } 
  else if (choice5==4){ 
   optim=4; 
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} 
  else if (choice5==1){ 
   optim=1; 
  } 
  else { 
    
cout << "\n Invalid choice. Try again. \n\n "; 
   goto top10; 
  } 
top11:; 
  cout << "\n Do you want to include Joint Limit Avoidance? (1= Yes, 2= No) 
\n\n "; 
  cin >> choice50; 
  if (choice50==2){ 
   JLA=0; 
  } 
  else if (choice50==1){ 
   JLA=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top11; 
  } 
top12:; 
  cout << "\n Do you want to include Joint Limit/Velocity and Obstacle 
Safety Stop? (1= Yes, 2= No) \n\n "; 
  cin >> choice500; 
  if (choice500==2){ 
   JLO=0; 
  } 
  else if (choice500==1){ 
   JLO=1; 
  } 
  else { 
   cout << "\n Invalid choice. Try again. \n\n "; 
   goto top12; 
  } 
 } 
 else { 
  cout << "\n Invalid choice. Try again. \n\n "; 
  goto topchoice; 
 } 
topchoice2:; 
 cout << "\n Choose the control mode: \n For position control, press '1', \n For 
velocity control, press '2', \n For SpaceBall control, press '3', \n For Psychology Mask 
control, press '4', \n For Touch Screen control, press '5'. \n\n "; 
 cin >> choice0; 
 if (choice0==1){ 
  cont=1; 
  printf ("\n Please enter the transformation matrix of the desired position 
and orientation from the control-based frame \n (e.g. [0 0 1 1455;-1 0 0 369;0 -1 0 999; 
0 0 0 1])\n\n"); 
  cin >> Td; 
  cout << "\n Please enter the desired linear velocity of the gripper in 
mm/s (e.g. 50) \n\n "; 
  cin >> v; 
top13:; 
  cout << "\n Chose the Trajectory generation function: \n Press '1' for a 
Polynomial function with Blending, or \n press '2' for a Polynomial function without 
Blending, or \n press '3' for a Linear function. \n\n "; 
  cin >> choice00; 
  if (choice00==2) { 
   trajf=2; 
  } 
  else if (choice00==3){ 



www.manaraa.com

87 
 

Appendix A. (Continued) 
   
  
 
trajf=3; 
  } 
  else if (choice00==1){ 
   trajf=1; 
  } 
  else { 
  cout << "\n Invalid choice. Try again. \n\n "; 
   
goto top13; 
  } 
 } 
 else if (choice0==2){ 
  cont=2; 
  cout << "\n Please enter the desired simulation time in seconds (e.g. 2) 
\n\n "; 
  cin >> ts; 
  if (cart==2){ 
   cout << "\n Please enter the desired 3x1 cartesian velocity vector 
of the gripper (in mm/s) (e.g. [70;70;-70]) \n\n "; 
   cin >> Vd; 
  } 
  else { 
   cout << "\n Please enter the desired 6x1 cartesian velocity vector 
of the gripper (in mm/s, radians/s) (e.g. [70;70;-70;0.001;0.001;0.001]) \n\n "; 
   Vd.SetSize(6,1); 
   cin >> Vd; 
  } 
 } 
 else if (choice0==3){ 
  cont=3; 
  //Space Ball will be used for control. 
  cout << "\n Please enter the desired linear velocity of the gripper in 
mm/s (e.g. 50) \n\n "; 
  cin >> v; 
 } 
 else if (choice0==4){ 
  cont=4; 
  //BCI 2000 Psychology Mask will be used for control. 
  cout << "\n Please enter the desired linear velocity of the gripper in 
mm/s (e.g. 50) \n\n "; 
  cin >> v; 
  cout << "\n Please enter the desired port number (e.g. 19711) \n\n "; 
  cin >> port1; 
 }   
 else if (choice0==5){ 
  cont=5; 
  //Touch Screen will be used for control. 
  cout << "\n Please enter the desired linear velocity of the gripper in 
mm/s (e.g. 50) \n\n "; 
  cin >> v;  
 } 
 else { 
  cout << "\n Invalid choice. Try again. \n\n "; 
  goto topchoice2; 
 } 
 
topchoice3:; 
 cout << "\n Choose animation type or no animation: \n For Virtual Reality 
Animation, press '1', \n For Matlab Graphics Animation, press '2', \n For BOTH 
Animations, press '3', \n For NO Animation, press '4'. \n\n "; 
 cin >> choice1; 
 if (choice1==2) { 
  vr=0; ml=1; 
 } 
 else if (choice1==3){ 
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vr=1; ml=1; 
 } 
 else if (choice1==4){ 
  vr=0; ml=0; 
 } 
 else if (choice1==1){ 
  vr=1; ml=0; 
 } 
 else { 
  cout << "\n Invalid choice. Try again. \n\n "; 
goto topchoice3; 
 } 
 
topchoice4:; 
 cout << "\n Would you like to run the actual WMRA? \n For yes, press '1', \n For 
no, press '2'.\n\n "; 
 cin >> choice10; 
 if (choice10==1) { 
  arm=1; 
 } 
 else if (choice10==2){ 
  arm=0; 
 } 
 else { 
  cout << "\n Invalid choice. Try again. \n\n "; 
  goto topchoice4; 
 } 
 
topchoice5:; 
 cout <<"\n Press '1' if you want to start at the 'ready' position, \n or press '2' 
if you want to enter the initial joint angles. \n\n "; 
 cin >> choice2; 
 if (choice2==2) { 
  cout <<"\n Please enter the arms initial angles vector in radians (e.g. 
[PI/2;PI/2;0;PI/2;PI/2;PI/2;0])\n\n "; 
  cin >> qi; 
  cout <<"\n  Please enter the initial x,y position and z orientation of the 
WMRA base from the ground base in millimeters and radians (e.g. [200;500;0.3])\n\n "; 
  cin >> WCi; 
  ini = 0; 
 } 
 else if (choice2==1){ 
  float qi2 [7]= {90, 90, 0, 90, 90, 90, 0}; 
  for ( j = 0 ; j < 7 ; j++ ) { 
   qi(j,0)=qi2[j]*d2r; 
  } 
  WCi.Null(3,1); 
  if (vr==1 || ml==1 || arm==1) { 
top14:;  
   cout <<"\n Press '1' if you want to include 'park' to 'ready' 
motion, \n or press '2' if not.\n\n "; 
   cin >> choice3; 
   if (choice3==2){ 
    ini = 0; 
   } 
   else if (choice3==1){ 
    ini = 1; 
   } 
   else { 
    cout << "\n Invalid choice. Try again. \n\n "; 
    goto top14; 
   } 
  } 
 } 
 else { 
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cout << "\n Invalid choice. Try again. \n\n "; 
  goto topchoice5; 
 } 
 
topchoice6:; 
 cout <<"\n Press '1' if you do NOT want to plot the simulation results, \n or 
press '2' if do.\n\n "; 
 cin >> choice4; 
 if (choice4==2) { 
  plt=2; 
 } 
 else if (choice4==1) { 
  
plt=1; 
 } 
 else { 
  cout << "\n Invalid choice. Try again. \n\n "; 
  goto topchoice6; 
 } 
  
 // Calculating the Transformation Matrix of the initial position of the WMRA's 
base: 
 Matrix Tiwc(4,4), qiwc(2,1); 
 Tiwc = WMRA_p2T(WCi(0,0),WCi(1,0),WCi(2,0)); 
 //cout<<"Tiwc\n"<<Tiwc<<"\n\n"; 
 //Calculating the initial Wheelchair Variables: 
 qiwc(0,0)=sqrt(pow(WCi(0,0),2)+pow(WCi(1,0),2)); 
 qiwc(1,0)=WCi(2,0); 
 //cout<<"qiwc\n"<<qiwc<<"\n\n"; 
 
 //Calculating the initial transformation matrices: 
 Matrix dq(1,1), Ti(4,4), Tia(4,4), Tiwco(4,4), T01(4,4), T12(4,4), T23(4,4), 
T34(4,4), T45(4,4), T56(4,4), T67(4,4), Unit(1,1); 
 Unit.Null(2,1); 
 WMRA_Tall(1, qi, Unit, Tiwc, Ti, Tia, Tiwco, T01, T12, T23, T34, T45, T56, T67); 
   
 FILE * fid; 
 fid = fopen("main.txt","w"); 
 fprintf(fid," Tiwc is: \n\n"); 
 for (j=0;j<Tiwc.RowNo();j++){ 
  for (k=0;k<Tiwc.ColNo();k++){ 
   fprintf(fid," %4.2f ",  Tiwc(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
  
 Tiwc=Tiwco; 
 
 fprintf(fid," qiwc is: \n\n"); 
 for (j=0;j<qiwc.RowNo();j++){ 
  fprintf(fid," %4.2f ",  qiwc(j,0)); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," Ti is: \n\n"); 
 for (j=0;j<Ti.RowNo();j++){ 
  for (k=0;k<Ti.ColNo();k++){ 
   fprintf(fid," %4.2f ",  Ti(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," Tia is: \n\n"); 
 for (j=0;j<Tia.RowNo();j++){ 
  for (k=0;k<Tia.ColNo();k++){ 
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fprintf(fid," %4.2f ",  Tia(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," Tiwc is: \n\n"); 
 for (j=0;j<Tiwc.RowNo();j++){ 
  for (k=0;k<Tiwc.ColNo();k++){ 
   fprintf(fid," %4.2f ",  Tiwc(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," T01 is: \n\n"); 
 for (j=0;j<T01.RowNo();j++){ 
  for (k=0;k<T01.ColNo();k++){ 
   fprintf(fid," %4.2f ",  T01(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," T12 is: \n\n"); 
 for (j=0;j<T12.RowNo();j++){ 
  for (k=0;k<T12.ColNo();k++){ 
   fprintf(fid," %4.2f ",  T12(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," T23 is: \n\n"); 
 for (j=0;j<T23.RowNo();j++){ 
  for (k=0;k<T23.ColNo();k++){ 
   fprintf(fid," %4.2f ",  T23(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," T34 is: \n\n"); 
 for (j=0;j<T34.RowNo();j++){ 
  for (k=0;k<T34.ColNo();k++){ 
   fprintf(fid," %4.2f ",  T34(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," T45 is: \n\n"); 
 for (j=0;j<T45.RowNo();j++){ 
  for (k=0;k<T45.ColNo();k++){ 
   fprintf(fid," %4.2f ",  T45(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," T56 is: \n\n"); 
 for (j=0;j<T56.RowNo();j++){ 
  for (k=0;k<T56.ColNo();k++){ 
   fprintf(fid," %4.2f ",  T56(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," T67 is: \n\n"); 
 for (j=0;j<T67.RowNo();j++){ 
  for (k=0;k<T67.ColNo();k++){ 
   fprintf(fid," %4.2f ",  T67(j,k)); 
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} 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
   
 float D, dt, total_time, n, dg; 
 Matrix dx(1,1); 
 float ***Tt; 
 if (cont==1){ 
  //Calculating the linear distance from the initial position to the desired 
position and the linear velocity: 
  if (coord==2){ 
   D=sqrt(pow(Td(0,3)-Tia(0,3),2) + pow(Td(1,3)-Tia(1,3),2) + 
pow(Td(2,3)-Tia(2,3),2)); 
   fprintf(fid," D is: %g \n\n", D); 
   fprintf(fid," \n\n\n"); 
  } 
   
else if (coord==3){ 
   D=sqrt(pow(Td(0,3),2) + pow(Td(1,3),2) + pow(Td(2,3),2)); 
   fprintf(fid," D is: %g \n\n", D); 
   fprintf(fid," \n\n\n"); 
  } 
  else { 
   D=sqrt(pow(Td(0,3)-Ti(0,3),2) + pow(Td(1,3)-Ti(1,3),2) + 
pow(Td(2,3)-Ti(2,3),2)); 
   fprintf(fid," D is: %g \n\n", D); 
   fprintf(fid," \n\n\n"); 
  } 
  //Calculating the number of iteration and the time increment (delta t) if 
the linear step increment of the tip is 1 mm: 
  dt=0.05;    // Time increment in seconds. 
  total_time=D/v;     // Total time of animation. 
  n=Math::Round(total_time/dt); // Number of iterations rounded up. 
  dt=total_time/n;    // Adjusted time increment in seconds. 
  fprintf(fid," Total time is: %4.2f \n\n", total_time); 
  fprintf(fid," n is: %g \n\n", n); 
  fprintf(fid," dt is: %g \n\n", dt); 
  fprintf(fid," \n\n\n"); 
   
  // Calculating the Trajectory of the end effector, and once the trajectory 
is calculated, we should redefine "Td" based on the ground frame: 
  FILE * fid2; 
  fid2 = fopen("traj.txt","w"); 
  if (coord==2){ 
   Tt=WMRA_traj(trajf,Tia,Td,n+1); 
   Td=Tiwc*Td; 
  } 
  else if (coord==3){ 
   Unit.Unit(4); 
   Tt=WMRA_traj(trajf,Unit,Td,n+1); 
   Td=Ti*Td; 
  } 
  else { 
   Tt=WMRA_traj(trajf,Ti,Td,n+1); 
  } 
  fprintf(fid2," Trajectory is \n\n"); 
   for (i=0;i<n+1;i++){ 
    for (j=0;j<4;j++){ 
     for (k=0;k<4;k++){ 
      fprintf(fid2," %4.2f ",  Tt[i][j][k]); 
     } 
     fprintf(fid2," \n"); 
    } 
    fprintf(fid2," \n\n\n"); 
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} 
   fprintf(fid2," \n\n\n"); 
   fclose (fid2); 
 } 
 else if (cont==2){ 
  // Calculating the number of iterations and the time increment (delta t) 
if the linear step increment of the gripper is 1 mm: 
  dt=0.05;    // Time increment in seconds. 
  total_time=ts;     // Total time of animation. 
  n=Math::Round(total_time/dt); // Number of iterations rounded up. 
  dt=total_time/n;    // Adjusted time increment in seconds. 
  dx=Vd; 
  dx*=(dt); 
  Td=Ti; 
  fprintf(fid," Total time is: %4.2f \n\n", total_time); 
  fprintf(fid," n is: %d \n\n", n); 
  fprintf(fid," dt is: %g \n\n", dt); 
  fprintf(fid," \n\n\n"); 
  fprintf(fid," dx is: \n\n"); 
  for (j=0;j<dx.RowNo();j++){ 
 fprintf(fid," %4.2f ",  dx(j,0)); 
  } 
 } 
 else if (cont==3){ 
  //WMRA_exit(); // This is to stop the simulation in SpaceBall control when 
the user presses the exit key. 
   
  FILE * fus; 
  fus = fopen("output.txt","w"); 
  fprintf(fus,"0\t0\t0\t0\t0\t0\t\n"); 
  fclose(fus); 
  n=1;     
 } 
 else if (cont==4){ 
   
myForm2.ShowDialog() == System::Windows::Forms::DialogResult::OK; 
 } 
 else { 
  //WMRA_screen('0');   // This is to start the screen controls. Argument: 
'0'=BACK button disabled, '1'=BACK button enabled. 
  dt=0.05; 
   
  n=1; 
 } 
  
 // Initializing the joint angles, the Transformation Matrix, and time: 
 Matrix qo(9,1), To(4,4), Towc(4,4), Toa(4,4), Jo(1,1); 
 float tt, ddt; 
 dq.Null(9,1); 
 dg=0; 
 for (j=0; j<7; j++){ 
  qo(j,0)=qi(j,0); 
 } 
 for (j=7; j<9; j++){ 
  qo(j,0)=qiwc(j-7,0); 
 } 
  
 To=Ti; 
 Toa=Tia; 
 Towc=Tiwc; 
 tt=0; 
 i=0; 
 dHo.Null(7,1); 
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fprintf(fid," dq is: \n\n"); 
 for (j=0;j<dq.RowNo();j++){ 
  fprintf(fid," %4.2f ",  dq(j,0)); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," qo is: \n\n"); 
 for (j=0;j<qo.RowNo();j++){ 
  fprintf(fid," %4.2f ",  qo(j,0)); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," To is: \n\n"); 
 for (j=0;j<To.RowNo();j++){ 
  for (k=0;k<To.ColNo();k++){ 
   fprintf(fid," %4.2f ",  To(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," Toa is: \n\n"); 
 for (j=0;j<Toa.RowNo();j++){ 
  for (k=0;k<Toa.ColNo();k++){ 
   fprintf(fid," %4.2f ",  Toa(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
 fprintf(fid," Towc is: \n\n"); 
 for (j=0;j<Towc.RowNo();j++){ 
  for (k=0;k<Towc.ColNo();k++){ 
   fprintf(fid," %4.2f ",  Towc(j,k)); 
  } 
  fprintf(fid," \n"); 
 } 
 fprintf(fid," \n\n\n"); 
  
 // Initializing the WMRA: 
 if (ini==0){   // When no "park" to "ready" motion required. 
    if (vr==1){ 
   //WMRA_VR_Animation(1, Towc, qo); 
  } 
  // Initializing Robot Animation in Matlab Graphics: 
  if (ml==1){ 
   //WMRA_ML_Animation(1, To, Td, Towc, T01, T12, T23, T34, T45, T56, 
T67); 
  } 
    if (arm==1){ 
   Matrix qotemp(1,1); 
   qotemp.Null(10,1); 
   for (j=0; j<9; j++){ 
    qotemp(j,0)=qo(j,0); 
   } 
   qotemp(9,0)=1; 
   WMRA_ARM_Motion(1, 2, qotemp, 0, g); 
   ddt=0; 
  } 
 } 
 else if (ini==1 && (vr==1 || ml==1 || arm==1)){  // When "park" to "ready" 
motion is required. 
  Matrix qotemp(2,1); 
  qotemp(0,0)=qo(7,0); 
  qotemp(1,0)=qo(8,0); 
  WMRA_park2ready(1, vr, ml, arm, Towc, qotemp, g); 
  if (arm==1){ 
   ddt=0; 
  } 
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} 
 wait(1); 
 
  // Re-Drawing the Animation: 
  Matrix Joa(6,7), Jowc(1,1), Jowctemp(1,1), Joatemp(1,1); 
  float detJoa, detJo, phi; 
  if (vr==1 || ml==1){ 
   //drawnow; 
  } 
  // Starting a timer: 
  clock_t startt, start2, endt, endf, endtt; 
  //time_t startt, endt, endf; 
  //time(&startt); 
  start2=clock()/ CLOCKS_PER_SEC; 
  startt=clock()*CLK_TCK/1000; 
  cout<<"\nStart is "<<startt<<"\n\n"; 
  double timedif; 
  /*Stopwatch ^ timePerParse; 
  timePerParse = Stopwatch::StartNew(); 
 // Stopwatch::StartNew();*/ 
   
 /* float ***Ttnew; 
  Ttnew = new float**[n]; 
  for (j = 0; j < n; ++j) { 
   Ttnew[j] = new float*[4]; 
   for (k = 0; k < 4; ++k){ 
    Ttnew[j][k] = new float[4]; 
   } 
  }*/ 
 
  Matrix qn(1,1), Tn(4,4), Tna(4,4), Tnwc(4,4); 
  Matrix q1(1,1), T1(4,4), Ta1(4,4), Twc1(4,4); 
  Matrix dq1(1,1); 
 
  // Starting the Iteration Loop: 
  //for (i=0;i<n;i++){ 
  int flagspace=0; 
  Matrix space(6,1); 
  while (i<=n){ 
   if (i==0){ 
    q1=qo; 
    T1=To; 
    Ta1=Toa; 
    Twc1=Towc; 
   } 
   else{ 
    q1=qn; 
    T1=Tn; 
    Ta1=Tna; 
    Twc1=Tnwc; 
    dq=dq1; 
   } 
    
   // Calculating the 6X7 Jacobian of the arm in frame 0: 
   WMRA_J07(T01, T12, T23, T34, T45, T56, T67, Joa, detJoa); 
   fprintf(fid," i is: %d\n\n",i); 
   fprintf(fid," Joa is: \n\n"); 
   for (j=0;j<Joa.RowNo();j++){ 
    for (k=0;k<Joa.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Joa(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
   fprintf(fid," detJoa is: %g \n\n", detJoa); 
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// Calculating the 6X2 Jacobian based on the WMRA's base in the ground frame: 
   phi=atan2(Twc1(1,0),Twc1(0,0)); 
   Jowc=WMRA_Jga(1, phi, Ta1(0,3), Ta1(1,3)); 
   fprintf(fid," Jowc is: \n\n"); 
   for (j=0;j<Jowc.RowNo();j++){ 
    for (k=0;k<Jowc.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Jowc(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
   fprintf(fid," phi is: %g \n\n", phi); 
   // Changing the Jacobian reference frame based on the choice of 
which coordinates frame are referenced in the Cartesian control: 
   // coord=1 for Ground Coordinates Control. 
   // coord=2 for Wheelchair Coordinates Control. 
   // coord=3 for Gripper Coordinates Control. 
   if (coord==2){ 
    Joa=Joa; 
    Jowctemp.Null(6,6); 
    for (j=0; j<3; j++){ 
     for (k=0; k<3; k++){ 
      Jowctemp(j,k)=Twc1(k,j); 
     } 
    } 
    for (j=3; j<6; j++){ 
     for (k=3; k<6; k++){ 
      Jowctemp(j,k)=Twc1(k-3,j-3); 
     } 
    } 
    Jowctemp=Jowctemp*Jowc; 
    Jowc=Jowctemp; 
   } 
   else if (coord==3){ 
    Joatemp.Null(6,6); 
    for (j=0; j<3; j++){ 
     for (k=0; k<3; k++){ 
      Joatemp(j,k)=Ta1(k,j); 
     } 
    } 
    for (j=3; j<6; j++){ 
     for (k=3; k<6; k++){ 
      Joatemp(j,k)=Ta1(k-3,j-3); 
     } 
    } 
    Joatemp=Joatemp*Joa; 
    Joa=Joatemp; 
    Jowctemp.Null(6,6); 
    for (j=0; j<3; j++){ 
     for (k=0; k<3; k++){ 
      Jowctemp(j,k)=T1(k,j); 
     } 
    } 
    for (j=3; j<6; j++){ 
     for (k=3; k<6; k++){ 
      Jowctemp(j,k)=T1(k-3,j-3); 
     } 
    } 
    Jowctemp=Jowctemp*Jowc; 
    Jowc=Jowctemp; 
   } 
   else if (coord==1){ 
    Joatemp.Null(6,6); 
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for (j=0; j<3; j++){ 
     for (k=0; k<3; k++){ 
      Joatemp(j,k)=Twc1(j,k); 
      

} 
    } 
    for (j=3; j<6; j++){ 
     for (k=3; k<6; k++){ 
      Joatemp(j,k)=Twc1(j-3,k-3); 
     } 
    } 
    Joatemp=Joatemp*Joa; 
    Joa=Joatemp; 
    Jowc=Jowc;  
   } 
    fprintf(fid," Joa is: \n\n"); 
    for (j=0;j<Joa.RowNo();j++){ 
     for (k=0;k<Joa.ColNo();k++){ 
      fprintf(fid," %4.2f ",  Joa(j,k)); 
     } 
     fprintf(fid," \n"); 
    } 
    fprintf(fid," \n\n\n"); 
    fprintf(fid," Jowc is: \n\n"); 
    for (j=0;j<Jowc.RowNo();j++){ 
     for (k=0;k<Jowc.ColNo();k++){ 
      fprintf(fid," %4.2f ",  Jowc(j,k)); 
     } 
     fprintf(fid," \n"); 
    } 
    fprintf(fid," \n\n\n"); 
    
 
   //Calculating the 3X9 or 6X9 augmented Jacobian of the WMRA system 
based on the ground frame: 
   if (cart==2){ 
    Joa.SetSize(3,7); 
    Joatemp.Null(7,3); 
    Joatemp=~Joa; 
    Joatemp=Joa*Joatemp; 
    detJoa=sqrt(Joatemp.Det()); 
    Jowc.SetSize(3,2); 
    Jo.SetSize(3,9); 
    for (j=0; j<3; j++){ 
     for (k=0; k<7; k++){ 
      Jo(j,k)=Joa(j,k); 
     } 
     for (k=7; k<9; k++){ 
      Jo(j,k)=Jowc(j,k-7); 
     } 
    } 
    Joatemp.Null(9,3); 
    Joatemp=~Jo; 
    Joatemp=Jo*Joatemp; 
    detJo=sqrt(Joatemp.Det()); 
   } 
   else { 
    Jo.SetSize(6,9); 
    for (j=0; j<6; j++){ 
     for (k=0; k<7; k++){ 
      Jo(j,k)=Joa(j,k); 
     } 
     for (k=7; k<9; k++){ 
      Jo(j,k)=Jowc(j,k-7); 
     } 
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} 
    Joatemp=~Jo; 
    Joatemp=Jo*Joatemp; 
    detJo=sqrt(Joatemp.Det());  
   } 
   fprintf(fid," Jo is: \n\n"); 
    
for (j=0;j<Jo.RowNo();j++){ 
    for (k=0;k<Jo.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Jo(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
   fprintf(fid," detJo is: %g \n\n", detJo); 
    
    
   // Finding the Cartesian errors of the end effector: 
   Matrix invTowc(1,1), invTo(1,1), Towctemp(1,1), Towctemp2(1,1), 
Tttemp(4,4), Ttnew(4,4); 
   if (cont==1){ 
    // Calculating the Position and Orientation errors of the 
end effector, and the rates of motion of the end effector:             
    if (coord==2){ 
     invTowc.Unit(4); 
     Towctemp=Twc1; 
     Towctemp.SetSize(3,3); 
     Towctemp2=~Towctemp;      
     Towctemp2*=(-1); 
     Towctemp.Null(3,1); 
     for (j=0; j<3; j++){ 
      Towctemp(j,0)=Twc1(j,3); 
     } 
     Towctemp=Towctemp2*Towctemp; 
     for (j=0; j<3; j++){ 
      for (k=0; k<3; k++){ 
       invTowc(j,k)=Twc1(k,j); 
      } 
      invTowc(j,3)=Towctemp(j,0); 
     } 
      
     Tttemp.Null(4,4); 
     for (j=0; j<4; j++){ 
      for (k=0; k<4; k++){ 
       Tttemp(j,k)=Tt[i][j][k];         
    
      } 
     } 
     Ttnew=invTowc*Tiwc*Tttemp; 
     dx=WMRA_delta(Ta1, Ttnew); 
    } 
    else if (coord==3){ 
     invTo.Unit(4); 
     Towctemp=T1; 
     Towctemp.SetSize(3,3); 
     Towctemp2=~Towctemp;      
     Towctemp2*=(-1); 
     Towctemp.Null(3,1); 
     for (j=0; j<3; j++){ 
      Towctemp(j,0)=T1(j,3); 
     } 
     Towctemp=Towctemp2*Towctemp; 
     for (j=0; j<3; j++){ 
      for (k=0; k<3; k++){ 
       invTo(j,k)=T1(k,j); 
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} 
      invTo(j,3)=Towctemp(j,0); 
     } 
      
     Tttemp.Null(4,4); 
     for (j=0; j<4; j++){ 
      for (k=0; k<4; k++){ 
       Tttemp(j,k)=Tt[i][j][k];         
    
       
} 
     } 
     Ttnew=invTo*Ti*Tttemp; 
     Unit.Unit(4); 
     dx=WMRA_delta(Unit, Ttnew); 
    } 
    else { 
     for (j=0; j<4; j++){ 
      for (k=0; k<4; k++){ 
       Tttemp(j,k)=Tt[i][j][k];  
      } 
     }  
     dx=WMRA_delta(T1, Tttemp); 
    } 
   } 
   else if (cont==2) { 
   } 
   else if (cont==3) { 
    char tx1[8], ty1[8], tz1[8], rx1[8], ry1[8], rz1[8], 
varscreenop[8], varexit1[9], varrun1[8]; 
    double tx, ty, tz, rx, ry, rz; 
    double varexit, varscree; 
 
    fstream results1 ("outputexit.txt", ios::in); 
    if (!results1){ 
     cout<<"Can not open"; 
    } 
    if (!results1.eof())  
    { 
     results1.getline(varscreenop, 8, '\t'); 
     results1.getline(varexit1, 8, '\t'); 
     results1.close(); 
    } 
    varscreenopn = atoi (varscreenop);  
    varexit = atof (varexit1); 
    varscree = atof (varscreenop); 
     
    if (varexit==0){ 
     MessageBox::Show("The system has been stopped","WMRA 
STOP", MessageBoxButtons::OK,MessageBoxIcon::Exclamation);      
     varexit=1; 
     FILE * ex; 
     ex = fopen("outputexit.txt","w"); 
     fprintf(ex,"%1.f\t%1.f\t\n",varscree, varexit); 
     fclose(ex); 
    } 
 
    fstream results ("output.txt", ios::in); 
    if (!results){ 
     cout<<"Can not open"; 
    } 
    if (!results.eof())  
    { 
     results.getline(ty1, 8, '\t'); 
     results.getline(tz1, 8, '\t'); 
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results.getline(tx1, 8, '\t'); 
     results.getline(ry1, 8, '\t'); 
     results.getline(rz1, 8, '\t'); 
     results.getline(rx1, 8, '\t'); 
 
     results.close(); 
    } 
 
    tx = atoi (tx1); 
    ty = atoi (ty1); 
    tz = atoi (tz1); 
    rx = atoi (rx1); 
    ry = atoi (ry1); 
    rz = atoi (rz1); 
    Matrix spdata(6,1); 
    cout<<"tx = "<<tx<<endl; 
    cout<<"ty = "<<ty<<endl; 
    cout<<"tz = "<<tz<<endl; 
    cout<<"rx = "<<rx<<endl; 
    cout<<"ry = "<<ry<<endl; 
    cout<<"rz = "<<rz<<endl; 
    spdata(0,0)=tx/20; 
    spdata(1,0)=-ty/40; 
    spdata(2,0)=tz/30; 
    spdata(3,0)=rx/1500; 
    spdata(4,0)=-ry/900; 
    spdata(5,0)=rz/1300; 
    dt=0.05; 
    dx=spdata; 
    dx*=(v*dt); 
    dg=0;//spdata(6,0); 
     
   } 
   else if (cont==4) { 
    //dx=WMRA_psy(port1); 
    //dx*=(v*dt); 
    //dg=dx(6,0); 
    //dx.SetSize(6,1); 
   } 
   else { 
    char dx1[8], dx2[8], dx3[8], dx4[8], dx5[8], dx6[8], 
dgx[8], varscreenop[8]; 
    dx.Null(6,1); 
 
    fstream results ("outputtouch.txt", ios::in); 
    if (!results){ 
     cout<<"Can not open"; 
    } 
 
    if (!results.eof())  
    { 
     results.getline(dx1, 8, '\t'); 
     results.getline(dx2, 8, '\t'); 
     results.getline(dx3, 8, '\t'); 
      

results.getline(dx4, 8, '\t'); 
     results.getline(dx5, 8, '\t'); 
     results.getline(dx6, 8, '\t'); 
     results.getline(dgx, 8, '\t'); 
     results.getline(varscreenop, 8, '\t'); 
 
     results.close(); 
    } 
    dx(0,0) = atoi (dx1); 
    cout<<"dx1: "<<dx(0,0)<<"\n"; 
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dx(1,0) = atoi (dx2); 
    cout<<"dx2: "<<dx(1,0)<<"\n"; 
    dx(2,0) = atoi (dx3); 
    cout<<"dx3: "<<dx(2,0)<<"\n"; 
    dx(3,0) = atof (dx4); 
    cout<<"dx4: "<<dx(3,0)<<"\n"; 
    dx(4,0) = atof (dx5); 
    cout<<"dx5: "<<dx(4,0)<<"\n"; 
    dx(5,0) = atof (dx6); 
    cout<<"dx6: "<<dx(5,0)<<"\n"; 
    dg = atoi (dgx);      
    cout<<"dx7: "<<dg<<"\n"; 
    varscreenopn = atoi (varscreenop);    
    cout<<"varscreen is: "<<varscreenopn<<"\n\n"; 
    dx*=(v*dt);      
   } 
   fprintf(fid," dx is: \n\n"); 
   for (j=0;j<dx.RowNo();j++){ 
    fprintf(fid," %4.2f ",  dx(j,0)); 
   } 
   fprintf(fid," \n\n\n"); 
  // cout<<"trying2"<<endl; 
    
   // Changing the order of Cartesian motion in the case when gripper 
reference frame is selected for control with the screen or psy or SpaceBall interfaces:  
   if (coord==3 && cont>=3){ 
    dx(0,0)=-dx(1,0); 
    dx(1,0)=-dx(2,0); 
    dx(2,0)=dx(0,0); 
    dx(3,0)=-dx(4,0); 
    dx(4,0)=-dx(5,0); 
    dx(5,0)=dx(3,0); 
  //  cout<<"trying3"<<endl; 
   } 
   if (cart==2) { 
    dx.SetSize(3,1); 
 //   cout<<"trying4"<<endl; 
   } 
    
   // Calculating the resolved rate with optimization: 
   // Index input values for "optim": 1= SR-I & WLN, 2= P-I & WLN, 3= 
SR-I & ENE, 4= P-I & ENE: 
   fprintf(fid," dq is: \n\n"); 
   for (j=0;j<dq.RowNo();j++){ 
    fprintf(fid," %4.2f ",  dq(j,0)); 
   } 
   fprintf(fid," \n\n\n"); 
    
   if (WCA==2) { 
 //   cout<<"tryingbef52"<<endl; 
    dq.SetSize(7,1); 
    dq1.Null(7,1); 
    dq1=WMRA_Opt(optim, JLA, JLO, Joa, detJoa, dq, dx, dt, q1); 
    dq1.SetSize(9,1); 
   // cout<<"trying5"<<endl; 
   } 
   else if (WCA==3) { 
     

Matrix dqtemp(2,1), dxtemp(2,1); 
    dqtemp(0,0)=dq(7,0); 
    dqtemp(1,0)=dq(8,0); 
    dxtemp(0,0)=dx(0,0); 
    dxtemp(1,0)=dx(1,0); 
    Unit.Unit(1); 
    dq1.Null(2,1); 
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dq1=WMRA_Opt(optim, JLA, JLO, Jowc, 1, dqtemp, dxtemp, dt, Unit); 

    dqtemp.Null(9,1); 
    dqtemp(7,0)=dq1(0,0);  
    dqtemp(8,0)=dq1(1,0);  
    dq1=dqtemp; 
   } 
   else { 
    dq1.Null(9,1); 
    dq1=WMRA_Opt(optim, JLA, JLO, Jo, detJo, dq, dx, dt, q1); 
   } 
   fprintf(fid," dq is: \n\n"); 
   for (j=0;j<dq1.RowNo();j++){ 
    fprintf(fid," %4.2f ",  dq1(j,0)); 
   } 
   fprintf(fid," \n\n\n"); 
    
   // Calculating the new Joint Angles:    
   qn=q1+dq1; 
   fprintf(fid," qn is: \n\n"); 
   for (j=0;j<qn.RowNo();j++){ 
    fprintf(fid," %4.2f ",  qn(j,0)); 
   } 
   fprintf(fid," \n\n\n"); 
 
 //  cout<<"try"<<endl; 
    
   // Calculating the new Transformation Matrices: 
   Matrix dqtemp(2,1); 
   dqtemp(0,0)=dq1(7,0); 
   dqtemp(1,0)=dq1(8,0); 
   WMRA_Tall(2, qn, dqtemp, Twc1, Tn, Tna, Tnwc, T01, T12, T23, T34, 
T45, T56, T67); 
   fprintf(fid," Tn is: \n\n"); 
   for (j=0;j<Tn.RowNo();j++){ 
    for (k=0;k<Tn.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Tn(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
   fprintf(fid," Tna is: \n\n"); 
   for (j=0;j<Tna.RowNo();j++){ 
    for (k=0;k<Tna.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Tna(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
   fprintf(fid," Tnwc is: \n\n"); 
   for (j=0;j<Tnwc.RowNo();j++){ 
    for (k=0;k<Tnwc.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Tnwc(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
   
// A safety condition function to stop the joints that may cause colision of the arm with 
itself, the wheelchair, or the human user: 
   if (JLO==1 && WCA!=3){ 
    Matrix dqtemp2(2,1), dq2(7,1),dq3(7,1); 
    dqtemp2(0,0)=dq1(7,0); 
    dqtemp2(1,0)=dq1(8,0); 
    for (j=0;j<7;j++){ 
     dq2(j,0)=dq1(j,0); 
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} 
    dq3=WMRA_collide(dq2, T01, T12, T23, T34, T45, T56, T67); 
    // Re-calculating the new Joint Angles: 
    dq1.Null(9,1); 
    for (j=0;j<7;j++){ 
     dq1(j,0)=dq3(j,0); 
    } 
    for (j=7;j<9;j++){ 
     dq1(j,0)=dqtemp2(j-7,0); 
    } 
    qn=q1+dq1; 
     
    // Re-calculating the new Transformation Matrices:  
   
    WMRA_Tall(2, qn, dqtemp2, Twc1, Tn, Tna, Tnwc, T01, T12, 
T23, T34, T45, T56, T67); 
   } 
 
   fprintf(fid," qn is: \n\n"); 
   for (j=0;j<qn.RowNo();j++){ 
    fprintf(fid," %4.2f ",  qn(j,0)); 
   } 
   fprintf(fid," \n\n\n"); 
   fprintf(fid," Tn is: \n\n"); 
   for (j=0;j<Tn.RowNo();j++){ 
    for (k=0;k<Tn.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Tn(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
   fprintf(fid," Tna is: \n\n"); 
   for (j=0;j<Tna.RowNo();j++){ 
    for (k=0;k<Tna.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Tna(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
   fprintf(fid," Tnwc is: \n\n"); 
   for (j=0;j<Tnwc.RowNo();j++){ 
    for (k=0;k<Tnwc.ColNo();k++){ 
     fprintf(fid," %4.2f ",  Tnwc(j,k)); 
    } 
    fprintf(fid," \n"); 
   } 
   fprintf(fid," \n\n\n"); 
    
   // Saving the plot data in case plots are required: 
   if (plt==2){ 
    WMRA_Plots(1, L, dt, i, tt, qn, dq1, Tn, Tnwc, detJoa, 
detJo); 
   } 
    
   // Updating Physical Arm: 
   if (arm==1){ 
    ddt=ddt+dt; 
    if (ddt>=0.5 || i>=(n+1)){ 
     Matrix dqtemp(10,1); 
 

for (j=0; j<9; j++){ 
      dqtemp(j,0)=qn(j,0);  
     } 
     dqtemp(9,0)=dg; 
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WMRA_ARM_Motion(2, 1, dqtemp, ddt, g); 
     cout<<"dqtemp(9,0)"<<dqtemp(9,0)<<endl; 
     wait(.5); 
     ddt=0; 
     cout<<"waitfdd= "<<endl; 
    } 
   } 
    
   // Updating Virtual Reality Animation: 
   if (vr==1){ 
    //WMRA_VR_Animation(2, Tnwc, qn); 
   } 
   // Updating Matlab Graphics Animation: 
   if (ml==1){ 
    //WMRA_ML_Animation(2, Ti, Td, Tnwc, T01, T12, T23, T34, 
T45, T56, T67); 
   } 
   // Re-Drawing the Animation: 
   if (vr==1 || ml==1){ 
    //drawnow; 
   } 
    
   // Updating the old values with the new values for the next 
iteration: 
   tt=tt+dt; 
   fprintf(fid," tt is %g ",  tt); 
   fprintf(fid," \n\n\n"); 
       
   // Stopping the simulation when the exit button is pressed: 
   if (cont==3 || cont==4 || cont==5){ 
    if (cont==3 || cont==4 ){ 
    // Exit myForm2;  
    // myForm2.ShowDialog() == 
System::Windows::Forms::DialogResult::OK; 
    } 
  //  cout<<"Sale o no: "<<varscreenopn<<"\n\n"; 
    if (varscreenopn == 1){ 
     n=n+1; 
    } 
    else { 
     break; 
    } 
   } 
   // Delay to comply with the required speed: 
   endt=0; 
   //time(&endt); 
   endt=clock()/ CLOCKS_PER_SEC; 
   //endt=clock()*CLK_TCK;  
   timedif=0; 
   //timedif=difftime(endt,startt); 
   timedif=(endt-start2); 
   if (timedif < tt){ 
    //wait((tt-timedif)); 
   } 
   //endtt=clock()*CLK_TCK;  
   //cout<<"\n"<<endtt; 
   i++; 
   if (cont==3){i=1;} 
  } 
 
  fclose(fid); 
   
// Reading the elapsed time and printing it with the simulation time: 
  if (cont==1 || cont==2){ 
   printf("\nSimula. time is %6.6f seconds.\n", total_time); 
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} 

  //time(&endf); 
  //endf=clock()/ CLOCKS_PER_SEC; 
  endf=clock()*CLK_TCK/1000; 
  cout<<"\nEnd is "<<endf<<"\n\n"; 
  //cout<<"\nElapsed time is "<<difftime(endf,startt)*1000<<"\n\n"; 
  cout<<"\nElapsed time is "<<(endf-startt)<<"\n\n"; 
       
  // Plotting: 
  if (plt==2){ 
   WMRA_Plots(2, L, dt, i, tt, qn, dq1, Tn, Tnwc, detJoa, detJo); 
  } 
   
  if (vr==1 || ml==1 || arm==1){ 
   // Going back to the ready position: 
   cout << "\n Do you want to go back to the 'ready' position? \n 
Press '1' for Yes, or press '2' for No. \n\n "; 
   cin >> choice6; 
   if (choice6==1){ 
    WMRA_any2ready(2, vr, ml, arm, Tnwc, qn, g); 
    // Going back to the parking position: 
    cout << "\n Do you want to go back to the 'parking' 
position? \n Press '1' for Yes, or press '2' for No. \n\n "; 
    cin >> choice7; 
     if (choice7==1){ 
      Matrix temp(2,1); 
      temp(0,0)=qn(7,0); 
      temp(1,0)=qn(8,0); 
      WMRA_ready2park(2, vr, ml, arm, Tnwc, temp, 
g); 
     } 
   } 
      // Closing the Arm library and Matlab 
Graphics Animation and Virtual Reality Animation and Plots windows: 
   cout << "\n Do you want to close all simulation windows and arm 
controls? \n Press '1' for Yes, or press '2' for No. \n\n "; 
   cin >> choice8; 
   if (choice8==1){ 
    Matrix temp(1,1); 
    temp.Null(1,1); 
    if (arm==1){ 
     WMRA_ARM_Motion(3, 0, temp, 0, g); 
    } 
    if (vr==1){ 
     //WMRA_VR_Animation(3, 0, 0); 
    } 
    if (ml==1){ 
     //WMRA_ML_Animation(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0); 
    } 
    if (plt==2){ 
     //close 
(figure(2),figure(3),figure(4),figure(5),figure(6),figure(7),figure(8),figure(9),figure(1
0)); 
    } 
   } 
  } 
    return 0; 
} 
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/* This function is for the resolved rate and optimization solution of the USF WMRA with 
9 DOF. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "Opt.h" 
#include "WCD.h" 
#include "Jlimit.h" 
#include "sign.h" 
#include <limits> 
 
using namespace std; 
using namespace math; 
 
Matrix WMRA_Opt(int i, float JLA, float JLO, Matrix Jo, float detJo, Matrix dq, Matrix 
dx, float dt, Matrix q){ 
 
 extern Matrix dHo; 
 dHo.Null(7,1); 
 
 // Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
 Matrix L(1,1); 
 L=WMRA_WCD(); 
 Matrix qmin(1,7), qmax(1,7); 
 WMRA_Jlimit(qmin, qmax); 
   
 double inf = std::numeric_limits<double>::infinity(); 
 int WCA, wo, ko, j, k; 
 Matrix pinvJo(7,7); 
 Matrix dH(7,1); 
 Matrix mul(1,1),  mul1(1,1), mul2(1,1), Jotrans(7,7); 
 Matrix W(7,7), dia(7,1), Winv(7,7); 
 float dof; 
 // The case when wheelchair-only control is required with no arm motion: 
 if (i==0){ 
  WCA=3; 
  // Calculating the Inverse of the Jacobian, which is always non-singular: 
  Matrix Jotemp(2,2); 
  for (j=0; j<2; j++){ 
   for (k=0; k<2; k++){ 
    Jotemp(j,k)=Jo(j,k); 
   } 
  } 
  pinvJo=!Jotemp; 
  // Calculating the joint angle change: 
  // Here, dq of the wheels are translated from radians to distances 
travelled after using the Jacobian. 
  dq = pinvJo * dx; 
  dq(0,0)=dq(0,0)*L(0,4); 
 } 
 else { 
  // Creating the gradient of the optimization function to avoid joint 
limits: 
  dH.Null(7,1); 
  //cout<<"dHo is \n\n"<<dHo<<"\n\n"; 
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if (JLA==1){ 
   for (j=0; j<7; j++){ 
    dH(j,0)=-0.25*pow((qmax(0,j)-qmin(0,j)),2)*(2*q(j,0)-
qmax(0,j)-qmin(0,j))/(pow((qmax(0,j)-q(j,0)),2)*pow((q(j,0)-qmin(0,j)),2)); 
    // Re-defining the weight in case the joint is moving away 
from it's limit or the joint limit was exceeded: 
    if (abs(dH(j,0)) < abs(dHo(j,0)) && q(j,0) < qmax(0,j) && 
q(j,0) > qmin(0,j)){ 
     dH(j,0)=0; 
    } 
    else if (abs(dH(j,0)) < abs(dHo(j,0)) && (q(j,0) >= 
qmax(0,j) || q(j,0) <= qmin(0,j))){ 
     dH(j,0)=inf; 
    } 
    else if (abs(dH(j,0)) > abs(dHo(j,0)) && (q(j,0) >= 
qmax(0,j) || q(j,0) <= qmin(0,j))){ 
     dH(j,0)=0; 
    } 
   } 
  } 
  dHo = dH; 
  //cout<<"dHo is \n\n"<<dHo<<"\n\n"; 
  // The case when arm-only control is required with no wheelchair motion: 
  if (dq.RowNo()==7){ 
   W.Null(7,7); 
   Winv.Null(7,7); 
   WCA=2; 
   wo=20000000; 
   ko=350000; 
   // The weight matrix to be used for the Weighted Least Norm 
Solution with Joint Limit Avoidance: 
   for (j=0; j < 7; j++){ 
    for (k=0; k < 7; k++){ 
     if (j==k){ 
      W(j,k)=1+abs(dH(j,0)); 
      dia(j,0)=W(j,k); 
      // The inverse of the diagonal weight 
matrix: 
      Winv(j,k)=1/(dia(j,0));   
   
     } 
    } 
   } 
  } 
  // The case when wheelchair-and-arm control is required: 
  else { 
   WCA=1; 
   wo=34000000; 
   ko=13; 
   // The weight matrix to be used for the Weighted Least Norm 
Solution: 
   W.Null(9,9); 
   W(7,7)=10; 
   W(8,8)=10; 
   for (j=0; j < 7; j++){ 
    for (k=0; k < 7; k++){ 
     if (j==k){ 
      W(j,k)=1+abs(dH(j,0)); 
     } 
    } 
   } 
   dia.SetSize(9,1); 
   Winv.Null(9,9); 
   for (j=0; j < 9; j++){ 
    for (k=0; k < 9; k++){ 
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if (j==k){ 
      dia(j,0)=W(j,k); 
      // The inverse of the diagonal weight 
matrix: 
      Winv(j,k)=1/(dia(j,0)); 
     } 
   

} 
   } 
  } 
 
  // Redefining the determinant based on the weight: 
  if (i==1 || i==2){ 
   Jotrans=~Jo; 
 //  cout<<"Jo' is\n\n"<<Jotrans<<"\n\n"; 
   mul1=Winv*Jotrans; 
 //  cout<<"mul1 is\n\n"<<mul1<<"\n\n"; 
   mul2=Jo*mul1; 
 //  cout<<"mul2 is\n\n"<<mul2<<"\n\n"; 
   mul=mul2; 
   //mul= Jo * Winv * Jotrans; 
 //  cout<<"mul is\n\n"<<mul<<"\n\n"; 
   detJo= sqrt(mul.Det()); 
 //  cout<<"detJo is\n\n"<<detJo<<"\n\n"; 
  } 
  dof=dx.RowNo(); 
//  cout<<"dof is\n\n"<<dof<<"\n\n"; 
 } 
 
 // SR-Inverse and Weighted Least Norm Optimization: 
 float sf; 
 if (i==1){ 
  // Calculating the variable scale factor, sf: 
  if (detJo<wo){ 
   sf=ko*pow((1-detJo/wo),2);        // from eq. 9.79 page 268 of 
Nakamura's book. 
  } 
  else { 
   sf=0; 
  } 
   // Calculating the SR-Inverse of the Jacobian: 
  Matrix sfm(2,2); 
  sfm.Unit(dof); 
  sfm*=(sf); 
  mul= mul + sfm; 
  mul=!mul; 
  pinvJo=Winv*Jotrans*mul; 
  //cout<<"pinvJo is\n\n"<<pinvJo<<"\n\n"; 
  // Calculating the joint angle change optimized based on the Weighted 
Least Norm Solution: 
  // Here, dq of the wheels are translated from radians to distances 
travelled after using the Jacobian. 
  if (WCA==2){ 
   dq = pinvJo * dx; 
  } 
  else { 
   dq = pinvJo * dx; 
 //  cout<<"dq is\n\n"<<dq<<"\n\n"; 
   dq(7,0)=dq(7,0)*L(0,4); 
  } 
 // cout<<"dq is\n\n"<<dq<<"\n\n"; 
 }  
  
 // Pseudo Inverse and Weighted Least Norm Optimization: 
 else if (i==2){ 
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// Calculating the Pseudo Inverse of the Jacobian: 
  mul=!mul; 
  pinvJo=Winv*Jotrans*mul; 
  // Calculating the joint angle change optimized based on the Weighted 
Least Norm Solution: 
   
 
// Here, dq of the wheels are translated from radians to distances travelled after using 
the Jacobian. 
  if (WCA==2){ 
   dq=pinvJo*dx; 
  } 
  else { 
   dq=pinvJo*dx; 
   dq(7,0)=dq(7,0)*L(0,4); 
  } 
 } 
  
 // SR-Inverse and Projection Gradient Optimization based on Euclidean norm of 
errors: 
 else if (i==3){ 
  Jotrans=~Jo; 
  // Calculating the variable scale factor, sf: 
  if (detJo<wo){ 
   sf=ko*pow((1-detJo/wo),2);        // from eq. 9.79 page 268 of 
Nakamura's book. 
  } 
  else { 
   sf=0; 
  } 
  // Calculating the SR-Inverse of the Jacobian: 
  Matrix sfm(2,2); 
  sfm.Unit(dof); 
  sfm*=(sf); 
 // cout<<"\n sfm  is: "<<sfm<<"\n"; 
 // cout<<"\n Jo is: "<<Jo<<"\n"; 
 // cout<<"\n Jotrans is: "<<Jotrans<<"\n"; 
  mul= Jo * Jotrans; 
 // cout<<"\n mul is: "<<mul<<"\n"; 
  mul= mul + sfm; 
 // cout<<"\n mul 2 is: "<<mul<<"\n"; 
  mul=!mul; 
 // cout<<"\n mul 3 is: "<<mul<<"\n"; 
  pinvJo=Jotrans * mul; 
 // cout<<"\n pinvJo is: "<<pinvJo<<"\n"; 
  // Calculating the joint angle change optimized based on minimizing the 
Euclidean norm of errors: 
  // Here, dq of the wheels are translated from distances travelled to 
radians, and back after using the Jacobian. 
  Matrix unit(7,7); 
  if (WCA==2){ 
   unit.Unit(7); 
   mul=unit-pinvJo*Jo; 
   //dq=pinvJo*dx+mul*dq; 
   mul*=(0.001); 
   dq=pinvJo*dx+mul*dH; 
 //  cout<<"\n dq is: "<<pinvJo<<"\n"; 
    
  } 
  else { 
   //dq(7,0)=dq(7,0)/L(0,4); 
   unit.Unit(9); 
   mul=unit-pinvJo*Jo; 
   //dq=pinvJo*dx+mul*dq; 
   mul*=(0.001); 
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dH.SetSize(9,1); 
   dq=pinvJo*dx+mul*dH; 
   dq(7,0)=dq(7,0)*L(0,4); 
 //  cout<<"\n dq is: "<<pinvJo<<"\n"; 
  } 
 } 
  // Pseudo Inverse and Projection Gradient Optimization based on Euclidean 
norm of errors: 
 else if (i==4){ 
 
 

Jotrans=~Jo; 
  // Calculating the Pseudo Inverse of the Jacobian: 
  mul= Jo * Jotrans; 
  mul=!mul; 
  pinvJo=Jotrans * mul; 
  // Calculating the joint angle change optimized based on minimizing the 
Euclidean norm of errors: 
  // Here, dq of the wheels are translated from distances travelled to 
radians, and back after using the Jacobian. 
  Matrix unit(7,7); 
  if (WCA==2){ 
   unit.Unit(7); 
   mul=unit-pinvJo*Jo; 
   //dq=pinvJo*dx+mul*dq; 
   mul*=(0.001); 
   dq=pinvJo*dx+mul*dH; 
  } 
  else { 
   //dq(7,0)=dq(7,0)/L(0,4); 
   unit.Unit(9); 
   mul=unit-pinvJo*Jo; 
   //dq=pinvJo*dx+mul*dq; 
   mul*=(0.001); 
   dH.SetSize(9,1); 
   dq=pinvJo*dx+mul*dH; 
   dq(7,0)=dq(7,0)*L(0,4); 
  } 
 } 
 if (JLO==1){ 
  // A safety condition to stop the joint that reaches the joint limits in 
the arm: 
  if (WCA!=3){ 
   for (k=0; k<7; k++){ 
    if (q(k,0) >= qmax(0,k) || q(k,0) <= qmin(0,k)){ 
     dq(k,0)=0; 
    } 
   } 
  // cout<<"dq is\n\n"<<dq<<"\n\n"; 
  } 
   
  // A safety condition to slow the joint that exceeds the velocity limits 
in the WMRA: 
  Matrix dqmax(2,1); 
  if (WCA==3){ 
   dqmax(0,0)=100; 
   dqmax(1,0)=0.15; 
   dqmax*=(dt);     // Joity velocity limits when the time increment 
is dt second. 
  } 
  else { 
   dqmax.Null(9,1); 
   for (k=0; k<7; k++){ 
    dqmax(k,0)=0.5; 
   } 
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dqmax(7,0)=100; 
   dqmax(8,0)=0.15; 
 //  cout<<"dqmax is\n\n"<<dqmax<<"\n\n"; 
 //  cout<<"dt is\n\n"<<dt<<"\n\n"; 
   dqmax*=(dt);     // Joint velocity limits when the time increment 
is dt second. 
 //  cout<<"dqmax is\n\n"<<dqmax<<"\n\n"; 
  } 
  for (k=0; k<dq.RowNo(); k++){ 
   if (abs(dq(k,0)) >= dqmax(k,0)){ 
    dq(k,0)=sign(dq(k,0))*dqmax(k,0); 
   } 
  } 
  
// cout << "\ndq is\n\n" << dq  ; 
 } 
  
 return dq; 

} 

 

 

/* This function gives the Transformation Matrix of the WMRA's base on the wheelchair 
with 2 DOF, given the desired x,y position and z rotation angle. 
Dimentions are as supplies, angles are in radians. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "WCD.h" 
#include "p2T.h"  
using namespace std; 
using namespace math; 
 
Matrix WMRA_p2T(float x, float y, float a){ 
 
 Matrix T(4,4); 
 
 //Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
 Matrix L(1,5); 
 L=WMRA_WCD(); 
 //Defining the Transformation Matrix: 
 
 T.Unit(4);  
 T(0,0)= cos(a); 
 T(0,1)= -sin(a); 
 T(0,3)= x;  
 T(1,0)= sin(a); 
 T(1,1)= cos(a); 
 T(1,3)= y; 
 T(2,3)= L(0,3)+L(0,4); 
 return T; 

} 



www.manaraa.com

111 
 

Appendix A. (Continued) 
 
 
 
/* This "new USF WMRA" function SIMULATES the arm going from the parking position to the 
ready position with ANIMATION. All angles are in Radians. 
 The parking position is assumed to be qi=[0;pi/2;0;pi;0;0;0] (Radians), the ready 
position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0] (Radians). 
 ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 
--> close the figures. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres & Punya Basnayaka%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "park2ready.h"  
#include "ArmMotion.h"  
#include "DH.h"  
#include "q2T.h"  
#include <time.h> 
using namespace std; 
using namespace math; 
 
void WMRA_park2ready(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qiwc, Galil 
&g){ 
Matrix zero(1,1); 
zero.Null(1,1); 
 if (ini==3){ 
  if (arm==1){ 
   try { 
            WMRA_ARM_Motion(ini, 0, zero, 0, g); 
   } 
   catch (...) { 
    cout << "Exception 1 occurred"; 
   } 
  } 
  if (vr==1){ 
   /*try { 
    WMRA_VR_Animation(ini, 0, 0); 
   } 
   catch (...) { 
    cout << "Exception 2 occurred"; 
   }*/ 
  } 
  if (ml==1){ 
   /*try { 
    WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
   } 
   catch (...) { 
    cout << "Exception 3 occurred"; 
   }*/ 
  } 
  return; 
 } 
 
 // Defining the used conditions: 
 float qi2 [7]= {0, PI/2, 0, PI, 0, 0, 0}; // Initial joint angles (Parking 
Position). 
 float qd2 [7]= {PI/2, PI/2, 0, PI/2, PI/2, PI/2, 0}; // Final joint angles (Ready 
Position). 
 Matrix qd(7,1), qi(7,1); 
 float ts, dt, ddt; 
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int n, j; 
 for ( j = 0 ; j < 7 ; j++ ) { 
  qi(j,0)=qi2[j]; 
  qd(j,0)=qd2[j]; 
 } 
 ts=10;  // (5 or 10 or 20) Simulation time to move the arm from any position to 
the ready position. 
 n=100;  // Number of time steps. 
 dt=ts/n;  // The time step to move the arm from any position to the ready 
position. 
 Matrix dq(1,1); 
 dq=qd-qi; 
 dq/=(0.5*n+5);  // Joint angle change at every time step. 
 
 FILE * fil; 
 fil = fopen("Park2ready.txt","w"); 
 fprintf(fil," qi is: \n\n"); 
  

int k; 
 for (j=0;j<qi.RowNo();j++){ 
  for (k=0;k<qi.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qi(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," qd is: \n\n"); 
 for (j=0;j<qd.RowNo();j++){ 
  for (k=0;k<qd.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qd(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," ts is %4.2f ",  ts); 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," n is %d ",  n); 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," dt is %4.2f ",  dt); 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," dq is: \n\n"); 
 for (j=0;j<dq.RowNo();j++){ 
  for (k=0;k<dq.ColNo();k++){ 
   fprintf(fil," %4.2f ",  dq(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 
 // Initializing the physical Arm: 
 if (arm==1){ 
  zero.Null(10,1); 
  for ( j = 0 ; j < 7 ; j++ ) { 
   zero(j,0)=qi(j,0); 
  } 
  zero(7,0)=qiwc(0,0); 
  zero(8,0)=qiwc(1,0); 
  WMRA_ARM_Motion(ini, 2, zero, dt, g); 
  ddt=0; 
 } 
 
 fprintf(fil," qi is: \n\n"); 
 for (j=0;j<qi.RowNo();j++){ 
  for (k=0;k<qi.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qi(j,k)); 
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} 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," qiwc is: \n\n"); 
 for (j=0;j<qiwc.RowNo();j++){ 
  for (k=0;k<qiwc.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qiwc(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 
 // Initializing Virtual Reality Animation: 
 if (vr==1){ 
  
// WMRA_VR_Animation(ini, Tiwc, qi); 
 } 
 
 // Initializing Robot Animation in Matlab Graphics: 
 Matrix DH(1,1); 
 Matrix T01(4,4), T12(4,4), T23(4,4), T34(4,4), T45(4,4), T56(4,4), T67(4,4); 
 Matrix Ti(4,4), Td(4,4); 
   
 if (ml==1){ 
  // Inputting the D-H Parameters in a Matrix form: 
  DH=WMRA_DH(qi); 
   
  // Calculating the transformation matrices of each link:   
  T01 = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2)); 
  //T2 
  T12 = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
  T23 = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
  T34 = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
  T45 = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T56 = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T67 = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2)); 
  // Calculating the Transformation Matrix of the initial and desired arm 
positions: 
  Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
  Td=Tiwc*WMRA_q2T(qd); 
  //WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67); 
 } 
 
 // Initialization: 
 Matrix qo(1,1); 
 float tt; 
 qo=qi; 
 tt=0; 
 
 fprintf(fil," qo is: \n\n"); 
 for (j=0;j<qo.RowNo();j++){ 
  for (k=0;k<qo.ColNo();k++){ 
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fprintf(fil," %4.2f ",  qo(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," tt is %4.2f ",  tt); 
 fprintf(fil," \n\n\n"); 
  
 Matrix qn(1,1); 
 clock_t startt, endt, endf; 
 double timedif;  
 Matrix T1a(1,1), T2a(1,1), T3a(1,1), T4a(1,1), T5a(1,1), T6a(1,1), T7a(1,1); 
  
 qn.Null(7,1); 
 while (tt <= ts) { 
  // Starting a timer: 
  startt=0; 
   
startt=clock()/ CLOCKS_PER_SEC; 
   
   
  // Calculating the new Joint Angles: 
  if (tt==0){ 
   qn=qo; 
  } 
  else if (tt < (dt*(0.5*n-5))){ 
   qn(0,0)=qo(0,0)+dq(0,0); 
  } 
  else if (tt < (dt*(0.5*n+5))){ 
   qn=qo+dq; 
  } 
  else if (tt < (dt*(n-1))){ 
   for (j=1;j<7;j++){ 
    qn(j,0)=qo(j,0)+dq(j,0); 
   } 
  } 
  fprintf(fil," qn is: \n\n"); 
  for (j=0;j<qn.RowNo();j++){ 
   for (k=0;k<qn.ColNo();k++){ 
    fprintf(fil," %4.2f ",  qn(j,k)); 
   } 
   fprintf(fil," \n"); 
  } 
  fprintf(fil," \n\n\n"); 
  fprintf(fil," ddt is %4.2f ",  ddt); 
  fprintf(fil," \n\n\n"); 
  // Updating the physical Arm: 
  if (arm==1) { 
   float ddt2=0; 
   ddt2=ddt+dt; 
   if (ddt2>=0.5 || tt>=ts){ 
    zero.Null(10,1); 
    for ( j = 0 ; j < 7 ; j++ ) { 
     zero(j,0)=qn(j,0); 
    } 
    zero(7,0)=qiwc(0,0); 
    zero(8,0)=qiwc(1,0); 
    WMRA_ARM_Motion(2, 1, zero, ddt2, g); 
    ddt2=0; 
   } 
   ddt=0; 
   ddt=ddt2; 
  } 
   
  // Updating Virtual Reality Animation: 
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if (vr==1){ 
   /*zero.Null(9,1); 
   for ( j = 0 ; j < 7 ; j++ ) { 
    zero(j,0)=qn(j,0); 
   } 
   zero(7,0)=qiwc(0,0); 
   zero(8,0)=qiwc(1,0);*/ 
   //WMRA_VR_Animation(2, Tiwc, zero); 
  } 
   
  // Updating Matlab Animation: 
  if (ml==1){ 
   // Calculating the new Transformation Matrix: 
   T1a = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(qn(0,0))*WMRA_transl(0,0,DH(0,2)); 
  //T2 
  T2a = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(qn(1,0))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
  T3a = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(qn(2,0))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
  T4a = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(qn(3,0))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
  T5a = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(qn(4,0))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T6a = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(qn(5,0))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T7a = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(qn(6,0))*WMRA_transl(0,0,DH(6,2)); 
   
  //WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a); 
  } 
 
  // Updating the old values with the new values for the next iteration: 
   
  qo.Null(7,1); 
  qo=qn; 
  tt=tt+dt; 
 
  fprintf(fil," qo is: \n\n"); 
  for (j=0;j<qo.RowNo();j++){ 
   for (k=0;k<qo.ColNo();k++){ 
    fprintf(fil," %4.2f ",  qo(j,k)); 
   } 
   fprintf(fil," \n"); 
  } 
  fprintf(fil," \n\n\n"); 
  fprintf(fil," tt is %4.2f ",  tt); 
  fprintf(fil," \n\n\n"); 
   
  // Pausing for the speed sync: 
  endt=0; 
  endt=clock()/ CLOCKS_PER_SEC; 
  timedif=0; 
  timedif=endt-startt; 
  wait((dt-timedif)); 
   
 } 
 fclose(fil); 
} 
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/* This function plots different animation variables for USF WMRA with 9 DOF. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
#include "matrix.h"  
#include "plots2.h"  
#include "T2rpy.h" 
#include <math.h> 
using namespace std; 
using namespace math; 
#define PI 3.14159265 
#define r2d 180/PI //Conversions from Radians to Degrees. 
 
void WMRA_Plots(int st, Matrix L, float dt, int i, float tt, Matrix qn, Matrix dq, Matrix 
Tn, Matrix Tnwc, float detjoa, float detjo){ 
 
// Calling global variables: 
 extern Matrix timep, q1, q2, q3, q4, q5, q6, q7, qll, qrr, qd1, qd2, qd3, qd4, 
qd5, qd6, qd7, qdl, qdr, x, y, z, roll, pitch, yaw, xc, yc, zc, rollc, pitchc, yawc, 
detJoap, detJop; 
 
 timep.SetSize(i+2,1); q1.SetSize(i+2,1); q2.SetSize(i+2,1); q3.SetSize(i+2,1); 
q4.SetSize(i+2,1); q5.SetSize(i+2,1); q6.SetSize(i+2,1); q7.SetSize(i+2,1); 
qll.SetSize(i+2,1); qrr.SetSize(i+2,1); qd1.SetSize(i+2,1); qd2.SetSize(i+2,1); 
qd3.SetSize(i+2,1); qd4.SetSize(i+2,1); qd5.SetSize(i+2,1); qd6.SetSize(i+2,1); 
qd7.SetSize(i+2,1); qdl.SetSize(i+2,1); qdr.SetSize(i+2,1); x.SetSize(i+2,1); 
y.SetSize(i+2,1); z.SetSize(i+2,1); roll.SetSize(i+2,1); pitch.SetSize(i+2,1); 
yaw.SetSize(i+2,1); xc.SetSize(i+2,1); yc.SetSize(i+2,1); zc.SetSize(i+2,1); 
rollc.SetSize(i+2,1); pitchc.SetSize(i+2,1); yawc.SetSize(i+2,1); detJoap.SetSize(i+2,1); 
detJop.SetSize(i+2,1); 
 
 
// Data collection at every iteration: 
 if (st==1){ 
 
  // Generating a time vector for plotting: 
  timep(i,0)=tt; 
  // Joint Angles: 
  q1(i,0)=qn(0,0)*r2d; 
  q2(i,0)=qn(1,0)*r2d; 
  q3(i,0)=qn(2,0)*r2d; 
  q4(i,0)=qn(3,0)*r2d; 
  q5(i,0)=qn(4,0)*r2d; 
  q6(i,0)=qn(5,0)*r2d; 
  q7(i,0)=qn(6,0)*r2d; 
  qll(i,0)=qn(7,0)-L(0,0)*qn(8,0)/2; 
  qrr(i,0)=qn(7,0)+L(0,0)*qn(8,0)/2; 
 
  // Joint Velocities: 
  qd1(i,0)=r2d*dq(0,0)/dt; 
  qd2(i,0)=r2d*dq(1,0)/dt; 
  qd3(i,0)=r2d*dq(2,0)/dt; 
  qd4(i,0)=r2d*dq(3,0)/dt; 
  qd5(i,0)=r2d*dq(4,0)/dt; 
  qd6(i,0)=r2d*dq(5,0)/dt; 
  qd7(i,0)=r2d*dq(6,0)/dt; 
  qdl(i,0)=(dq(7,0)-L(0,0)*dq(8,0)/2)/dt; 
  qdr(i,0)=(dq(7,0)+L(0,0)*dq(8,0)/2)/dt; 
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// Hand Position and Orientation: 
  x(i,0)=Tn(0,3); 
  y(i,0)=Tn(1,3); 
  z(i,0)=Tn(2,3); 
  Matrix or(1,1); 
  or.Null(1,1); 
  or=WMRA_T2rpy(Tn); 
  roll(i,0)=or(0,0)*r2d; 
  pitch(i,0)=or(1,0)*r2d; 
  yaw(i,0)=or(2,0)*r2d; 
   
  // Arm Base Position and Orientation on the Wheelchair: 
  xc(i,0)=Tnwc(0,3); 
  yc(i,0)=Tnwc(1,3); 
  zc(i,0)=Tnwc(2,3); 
  Matrix orc(1,1); 
  orc.Null(1,1); 
  orc=WMRA_T2rpy(Tnwc); 
  rollc(i,0)=orc(0,0)*r2d; 
  pitchc(i,0)=orc(1,0)*r2d; 
  yawc(i,0)=orc(2,0)*r2d; 
   
  // Manipulability Measure: 
  detJoap(i,0)=detjoa; 
  detJop(i,0)=detjo; 
 } 
  // Plotting the data in graphas: 
 else { 
  int j; 
   
  FILE * fid; 
  fid = fopen("plots.cvs","w"); 
  fprintf(fid," time \t qd1 \t qd2 \t qd3 \t qd4 \t qd5 \t qd6 \t qd7 \t\t 
time \t qdl \t qdr \t\t time \t q1 \t q2 \t q3 \t q4 \t q5 \t q6 \t q7 \t\t time \t qll 
\t qrr \t\t time \t x \t y \t z \t\t time \t roll \t pitch \t yaw \t\t time \t xc \t yc 
\t zc \t\t time \t rollc \t pitchc \t yawc \t\t time \t detJoa \t detJo \n"); 
  for (j=0; j<timep.RowNo(); j++){ 
   fprintf(fid," %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t\t %g 
\t %g \t %g \t\t %g \t %g \t %g \t %g \t %g \t %g \t %g \t %g \t\t %g \t %g \t %g \t\t %g 
\t %g \t %g \t %g \t\t %g \t %g \t %g \t %g \t\t %g \t %g \t %g \t %g \t\t %g \t %g \t %g 
\t %g \t\t %g \t %g \t %g\n", timep(j,0) , qd1(j,0) , qd2(j,0) , qd3(j,0) , qd4(j,0) , 
qd5(j,0) , qd6(j,0) , qd7(j,0), timep(j,0) , qdl(j,0) , qdr(j,0), timep(j,0) , q1(j,0) , 
q2(j,0) , q3(j,0) , q4(j,0) , q5(j,0) , q6(j,0) , q7(j,0), timep(j,0) , qll(j,0) , 
qrr(j,0), timep(j,0) , x(j,0) , y(j,0), z(j,0), timep(j,0) , roll(j,0) , pitch(j,0), 
yaw(j,0), timep(j,0) , xc(j,0) , yc(j,0), zc(j,0), timep(j,0) , rollc(j,0) , pitchc(j,0), 
yawc(j,0), timep(j,0) , detJoap(j,0) , detJop(j,0) ); 
  } 
  fclose(fid); 
 
 } 

} 
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/*  This function uses a 3rd order Polynomial with no Blending factor to find a smooth 
trajectory points of a variable "q" along a streight line, given the initial and final 
variable values and the number of trajectory points. 
The output is the variable position. 
See Eqs. 7.3 and 7.6 page 204,205 of Craig Book 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "Polynomial.h" 
using namespace std; 
using namespace math; 
 
#ifndef _NO_TEMPLATE 
typedef matrix<double> Matrix; 
#else 
typedef matrix Matrix; 
#endif 
 
Matrix WMRA_Polynomial(float qi, float qf, float n){ 
  
 Matrix qtp(2,1); 
 
 float tt, tf, dt; 
 int i; 
 tt=0; 
 tf=abs(qf-qi); 
 dt=tf/(n-1); 
  
 float *qttemp; 
 qttemp = new float[n]; 
 
 for (i=0; i<n; i++){ 
  if (tf<=0.001){ 
   qttemp[i]=qi; 
  } 
  else { 
   qttemp[i]=qi+(qf-qi)*3*pow(tt,2)/pow(tf,2)-(qf-
qi)*2*pow(tt,3)/pow(tf,3); //From Eq.7.3 and 7.6 page 204,205 of Craig Book 
  } 
  tt = tt + dt; 
 } 
 qtp.SetSize(n,1); 
 for (i=0; i < n; i++){ 
  qtp(i,0) = qttemp[i]; 
 } 
 delete [] qttemp;  
 
 return qtp; 

} 
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/* This function gives the Transformation Matrix of the new USF WMRA with 7 DOF, given 
the joint angles in Radians. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "DH.h" 
#include "Rotx.h" 
#include "Rotz.h" 
#include "Transl.h" 
#include "q2T.h" 
#include <time.h> 
 
using namespace std; 
using namespace math; 
 
void wait ( int seconds ) 
{ 
 clock_t endwait; 
 endwait = clock () + seconds * CLOCKS_PER_SEC ; 
 while (clock() < endwait) {} 
} 
 
Matrix WMRA_q2T(Matrix q){ 
 
 Matrix T(4,4); 
 // Inputting the D-H Parameters in a Matrix form: 
 Matrix DH(1,1); 
 DH=WMRA_DH(q);  
 // Calculating the transformation matrices of each link: 
 Matrix T1(4,4),T2(4,4),T3(4,4),T4(4,4),T5(4,4),T6(4,4),T7(4,4),Tttemp(4,4); 
 //T1 
 T1 = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2)); 
 //T2 
 T2 = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2)); 
 //T3 
 T3 = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2)); 
 //T4 
 T4 = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2)); 
 //T5 
 T5 = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2)); 
 //T6 
 T6 = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2)); 
 //T7 
 T7 = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2));
 //Calculating the total Transformation Matrix of the given arm position: 
 T=T1*T2*T3*T4*T5*T6*T7; 
 
 return T; 
} 
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/* This "new USF WMRA" function SIMULATES the arm going from the ready position to any 
position with ANIMATION. All angles are in Radians. 
 The ready position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0] (Radians). 
 ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 
--> close the figures. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres & Punya A. Basnayaka% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "ready2any.h"  
#include "ArmMotion.h"  
#include "DH.h"  
#include "q2T.h"  
#include <time.h> 
using namespace std; 
using namespace math; 
 
void WMRA_ready2any(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qd, Galil &g){ 
Matrix zero(1,1); 
zero.Null(1,1); 
 if (ini==3){ 
  if (arm==1){ 
   try { 
            WMRA_ARM_Motion(ini, 0, zero, 0, g); 
   } 
   catch (...) { 
    cout << "Exception 1 occurred"; 
   } 
  } 
  if (vr==1){ 
   /*try { 
    WMRA_VR_Animation(ini, 0, 0); 
   } 
   catch (...) { 
    cout << "Exception 2 occurred"; 
   }*/ 
  } 
  if (ml==1){ 
   /*try { 
    WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
   } 
   catch (...) { 
    cout << "Exception 3 occurred"; 
   }*/ 
  } 
  return; 
 } 
 
 // Defining the used conditions: 
 float qi2 [7]= {PI/2, PI/2, 0, PI/2, PI/2, PI/2, 0}; // Initial joint angles 
(Ready Position). 
 Matrix qi(7,1); 
 float ts, dt, ddt; 
 int n, j; 
 for ( j = 0 ; j < 7 ; j++ ) { 
  qi(j,0)=qi2[j]; 
 } 
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ts=10;  // (5 or 10 or 20) Simulation time to move the arm from any position to the ready 
position. 
 n=100;  // Number of time steps. 
 dt=ts/n;  // The time step to move the arm from any position to the ready 
position. 
 
 // Initializing the physical Arm: 
 if (arm==1){ 
  qi.SetSize(10,1); 
  WMRA_ARM_Motion(ini, 2, qi, dt, g); 
  ddt=0; 
  qi.SetSize(7,1); 
 } 
 
 // Initializing Virtual Reality Animation: 
 if (vr==1){ 
  //qi.SetSize(9,1); 
 // WMRA_VR_Animation(ini, Tiwc, qi); 
  //qi.SetSize(7,1); 
 } 
 
 // Initializing Robot Animation in Matlab Graphics: 
 Matrix DH(1,1); 
 Matrix T01(4,4), T12(4,4), T23(4,4), T34(4,4), T45(4,4), T56(4,4), T67(4,4); 
 Matrix Ti(4,4), Td(4,4); 
   
 if (ml==1){ 
  // Inputting the D-H Parameters in a Matrix form: 
  DH=WMRA_DH(qi); 
   
  // Calculating the transformation matrices of each link:   
  T01 = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2)); 
  //T2 
  T12 = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
  T23 = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
  T34 = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
  T45 = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T56 = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T67 = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2)); 
  // Calculating the Transformation Matrix of the initial and desired arm 
positions: 
  Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
  Td=Tiwc*WMRA_q2T(qd); 
  //WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67); 
 } 
 
 // Check for the shortest route: 
 Matrix diff(7,1); 
 for ( j = 0 ; j < 7 ; j++ ) { 
  diff(j,0)=qd(j,0)-qi(j,0); 
 } 
 for ( j = 0 ; j < 7 ; j++ ) { 
  if (diff(j,0) > PI) { 
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diff(j,0)=diff(j,0)-2*PI; 
  } 
  else if (diff(j,0) < (-PI)) { 
   diff(j,0)=diff(j,0)+2*PI; 
  } 
 } 
 
  
// Joint angle change at every time step. 
 diff/=(n); 
 Matrix dq(7,1); 
 for ( j = 0 ; j < 7 ; j++ ) { 
  dq(j,0)=diff(j,0); 
 } 
  
 // Initialization: 
 Matrix qo(1,1); 
 float tt; 
 qo=qi; 
 tt=0; 
 
 Matrix qn(1,1); 
 clock_t startt, endt, endf; 
 double timedif;  
 Matrix T1a(1,1), T2a(1,1), T3a(1,1), T4a(1,1), T5a(1,1), T6a(1,1), T7a(1,1); 
 
 while (tt <= (ts-dt)) { 
  // Starting a timer: 
  startt=0; 
  startt=clock()/ CLOCKS_PER_SEC; 
   
   
  // Calculating the new Joint Angles: 
  qn.Null(7,1); 
  qn=qo+dq; 
   
  // Updating the physical Arm: 
  if (arm==1) { 
   float ddt2; 
   ddt2=0; 
   ddt2=ddt+dt; 
   if (ddt>=0.5 || tt>=(ts-dt)){ 
    qn.SetSize(10,1); 
    WMRA_ARM_Motion(2, 1, qn, ddt2, g); 
    ddt=0; 
    qn.SetSize(7,1); 
   } 
   ddt=0; 
   ddt=ddt2; 
  } 
   
  // Updating Virtual Reality Animation: 
  if (vr==1){ 
   //qn.SetSize(9,1); 
   //WMRA_VR_Animation(2, Tiwc, qn); 
  } 
   
  // Updating Matlab Animation: 
  if (ml==1){ 
   // Calculating the new Transformation Matrix: 
   T1a = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(qn(0,0))*WMRA_transl(0,0,DH(0,2)); 
  //T2 
  T2a = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(qn(1,0))*WMRA_transl(0,0,DH(1,2)); 
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//T3 
  T3a = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(qn(2,0))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
  T4a = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(qn(3,0))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
  T5a = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(qn(4,0))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T6a = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(qn(5,0))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T7a = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(qn(6,0))*WMRA_transl(0,0,DH(6,2)); 
   
  //WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a); 
  } 
 
  // Updating the old values with the new values for the next iteration: 
   
  qo.Null(7,1); 
  qo=qn; 
  tt=tt+dt; 
   
  // Pausing for the speed sync: 
  endt=0; 
  endt=clock()/ CLOCKS_PER_SEC; 
  timedif=0; 
  timedif=endt-startt; 
  wait((dt-timedif)); 
 } 
} 

 

/* This "new USF WMRA" function SIMULATES the arm going from the ready position to the 
parking position with ANIMATION. All angles are in Radians. 
The parking position is assumed to be qi=[0;pi/2;0;pi;0;0;0] (Radians), the ready 
position is assumed to be qd=[pi/2;pi/2;0;pi/2;pi/2;pi/2;0]] (Radians). 
ini=1 --> initialize animation figures, ini=2 or any --> just update the figures, ini=3 -
-> close the figures. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres & Punya A. Basnayaka% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "ready2park.h"  
#include "ArmMotion.h"  
#include "DH.h"  
#include "q2T.h"  
#include <time.h> 
using namespace std; 
using namespace math; 
 
void WMRA_ready2park(int ini, int vr, int ml, int arm, Matrix Tiwc, Matrix qiwc, Galil 
&g){ 
 
Matrix zero(1,1); 
zero.Null(1,1); 
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if (ini==3){ 
  if (arm==1){ 
   try { 
            WMRA_ARM_Motion(ini, 0, zero, 0, g); 
   } 
   catch (...) { 
    cout << "Exception 1 occurred"; 
   } 
  } 
  if (vr==1){ 
    

/*try { 
    WMRA_VR_Animation(ini, 0, 0); 
   } 
   catch (...) { 
    cout << "Exception 2 occurred"; 
   }*/ 
  } 
  if (ml==1){ 
   /*try { 
    WMRA_ML_Animation(ini, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0); 
   } 
   catch (...) { 
    cout << "Exception 3 occurred"; 
   }*/ 
  } 
  return; 
 } 
 
 // Defining the used conditions: 
 float qi2 [7]= {PI/2, PI/2, 0, PI/2, PI/2, PI/2, 0}; // Initial joint angles 
(Parking Position). 
 float qd2 [7]= {0, PI/2, 0, PI, 0, 0, 0}; // Final joint angles (Ready Position). 
 Matrix qd(7,1), qi(7,1); 
 float ts, dt, ddt; 
 int n, j; 
 for ( j = 0 ; j < 7 ; j++ ) { 
  qi(j,0)=qi2[j]; 
  qd(j,0)=qd2[j]; 
 } 
 ts=20;  // (5 or 10 or 20) Simulation time to move the arm from any position to 
the ready position. 
 n=100;  // Number of time steps. 
 dt=ts/n;  // The time step to move the arm from any position to the ready 
position. 
 Matrix dq(1,1); 
 dq=qd-qi; 
 dq/=(0.5*n+5);  // Joint angle change at every time step. 
 
 FILE * fil; 
 fil = fopen("Ready2park.txt","w"); 
 fprintf(fil," qi is: \n\n"); 
 int k; 
 for (j=0;j<qi.RowNo();j++){ 
  for (k=0;k<qi.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qi(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," qd is: \n\n"); 
 for (j=0;j<qd.RowNo();j++){ 
  for (k=0;k<qd.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qd(j,k)); 
  } 
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fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," ts is %4.2f ",  ts); 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," n is %d ",  n); 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," dt is %4.2f ",  dt); 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," dq is: \n\n"); 
 for (j=0;j<dq.RowNo();j++){ 
  for (k=0;k<dq.ColNo();k++){ 
  fprintf(fil," %4.2f ",  dq(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 // Initializing the physical Arm: 
 if (arm==1){ 
  zero.Null(10,1); 
  for ( j = 0 ; j < 7 ; j++ ) { 
   zero(j,0)=qi(j,0); 
  } 
  zero(7,0)=qiwc(0,0); 
  zero(8,0)=qiwc(1,0); 
  WMRA_ARM_Motion(ini, 2, zero, dt, g); 
  ddt=0; 
 } 
 fprintf(fil," qi is: \n\n"); 
 for (j=0;j<qi.RowNo();j++){ 
  for (k=0;k<qi.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qi(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," qiwc is: \n\n"); 
 for (j=0;j<qiwc.RowNo();j++){ 
  for (k=0;k<qiwc.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qiwc(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 // Initializing Virtual Reality Animation: 
 if (vr==1){ 
  /*zeros.Null(9,1); 
  for ( j = 0 ; j < 7 ; j++ ) { 
   zeros(j,0)=qi(j,0); 
  } 
  zeros(7,0)=qiwc(0,0); 
  zeros(8,0)=qiwc(1,0);*/ 
 // WMRA_VR_Animation(ini, Tiwc, qi); 
 } 
 // Initializing Robot Animation in Matlab Graphics: 
 Matrix DH(1,1); 
 Matrix T01(4,4), T12(4,4), T23(4,4), T34(4,4), T45(4,4), T56(4,4), T67(4,4); 
 Matrix Ti(4,4), Td(4,4); 
  if (ml==1){ 
  // Inputting the D-H Parameters in a Matrix form: 
  DH=WMRA_DH(qi); 
   
  // Calculating the transformation matrices of each link:   
  T01 = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2)); 
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//T2 
  T12 = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
  T23 = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
  T34 = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
 
     

T45= 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T56 = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T67 = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2)); 
  // Calculating the Transformation Matrix of the initial and desired arm 
positions: 
  Ti=Tiwc*T01*T12*T23*T34*T45*T56*T67; 
  Td=Tiwc*WMRA_q2T(qd); 
  //WMRA_ML_Animation(ini, Ti, Td, Tiwc, T01, T12, T23, T34, T45, T56, T67); 
 } 
 
 // Initialization: 
 Matrix qo(1,1); 
 float tt; 
 qo=qi; 
 tt=0; 
 
 fprintf(fil," qo is: \n\n"); 
 for (j=0;j<qo.RowNo();j++){ 
  for (k=0;k<qo.ColNo();k++){ 
   fprintf(fil," %4.2f ",  qo(j,k)); 
  } 
  fprintf(fil," \n"); 
 } 
 fprintf(fil," \n\n\n"); 
 fprintf(fil," tt is %4.2f ",  tt); 
 fprintf(fil," \n\n\n"); 
  
 Matrix qn(1,1); 
 clock_t startt, endt, endf; 
 double timedif;  
 Matrix T1a(1,1), T2a(1,1), T3a(1,1), T4a(1,1), T5a(1,1), T6a(1,1), T7a(1,1); 
  
 qn.Null(7,1); 
 while (tt <= ts) { 
  // Starting a timer: 
  startt=0; 
  startt=clock()/ CLOCKS_PER_SEC; 
   
   
  // Calculating the new Joint Angles: 
   
  if (tt==0){ 
   qn=qo; 
  } 
  else if (tt < (dt*(0.5*n-5))){ 
   for (j=1;j<7;j++){ 
    qn(j,0)=qo(j,0)+dq(j,0); 
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}    
  } 
  else if (tt < (dt*(0.5*n+5))){ 
   qn=qo+dq; 
  } 
  else if (tt < (dt*(n-1))){ 
   qn(0,0)=qo(0,0)+dq(0,0); 
  } 
 
  fprintf(fil," qn is: \n\n"); 
  for (j=0;j<qn.RowNo();j++){ 
   for (k=0;k<qn.ColNo();k++){ 
    fprintf(fil," %4.2f ",  qn(j,k)); 
   } 
   fprintf(fil," \n"); 
 
   

} 
  fprintf(fil," \n\n\n"); 
  fprintf(fil," ddt is %4.2f ",  ddt); 
  fprintf(fil," \n\n\n"); 
   
  // Updating the physical Arm: 
  if (arm==1) { 
   float ddt2=0; 
   ddt2=ddt+dt; 
   if (ddt>=0.5 || tt>=ts){ 
    zero.Null(10,1); 
    for ( j = 0 ; j < 7 ; j++ ) { 
     zero(j,0)=qn(j,0); 
    } 
    zero(7,0)=qiwc(0,0); 
    zero(8,0)=qiwc(1,0); 
    WMRA_ARM_Motion(2, 1, zero, ddt2, g); 
    ddt2=0; 
   } 
   ddt=0; 
   ddt=ddt2; 
  } 
   
  // Updating Virtual Reality Animation: 
  if (vr==1){ 
   /*zero.Null(9,1); 
   for ( j = 0 ; j < 7 ; j++ ) { 
    zero(j,0)=qn(j,0); 
   } 
   zero(7,0)=qiwc(0,0); 
   zero(8,0)=qiwc(1,0);*/ 
   //WMRA_VR_Animation(2, Tiwc, zero); 
  } 
   
  // Updating Matlab Animation: 
  if (ml==1){ 
   // Calculating the new Transformation Matrix: 
   T1a = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(qn(0,0))*WMRA_transl(0,0,DH(0,2)); 
  //T2 
  T2a = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(qn(1,0))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
  T3a = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(qn(2,0))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
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T4a = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(qn(3,0))*WMRA_transl(0,0,DH(
3,2)); 

  //T5 
  T5a = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(qn(4,0))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T6a = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(qn(5,0))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T7a = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(qn(6,0))*WMRA_transl(0,0,DH(6,2)); 
   
  //WMRA_ML_Animation(2, Ti, Td, Tiwc, T1a, T2a, T3a, T4a, T5a, T6a, T7a); 
  } 
  // Updating the old values with the new values for the next iteration: 
  qo.Null(7,1); 
  qo=qn; 
  tt=tt+dt; 

fprintf(fil," qo is: \n\n"); 
  for (j=0;j<qo.RowNo();j++){ 
   for (k=0;k<qo.ColNo();k++){ 
    fprintf(fil," %4.2f ",  qo(j,k)); 
   } 
   fprintf(fil," \n"); 
  } 
  fprintf(fil," \n\n\n"); 
  fprintf(fil," tt is %4.2f ",  tt); 
  fprintf(fil," \n\n\n"); 
  // Pausing for the speed sync: 
  endt=0; 
  endt=clock()/ CLOCKS_PER_SEC; 
  timedif=0; 
  timedif=endt-startt; 
  wait((dt-timedif)); 
 } 
 fclose(fil); 
} 

 

/* This function gives the homogeneous transformation matrix, given the rotation angle 
about the X axis. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "Rotx.h"   
using namespace std; 
using namespace math; 
 
Matrix WMRA_rotx(float t){ 
  
 Matrix T(4,4); 
 
 float c, s; 
 c=cos(t); 
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s=sin(t); 
 T.Unit(4); 
 T(1,1)= c; 
 T(1,2)= -s; 
 T(2,1)= s; 
 T(2,2)= c; 
 
 return T; 
} 
 
/* This function gives the homogeneous transformation matrix, given the rotation angle 
about the Y axis. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2007 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "Roty.h" 
using namespace std; 
using namespace math; 
 
Matrix WMRA_roty(float t){ 
  
 Matrix T(4,4); 
 
 float c, s; 
 c=cos(t); 
 s=sin(t); 
 T.Unit(4); 
 T(0,0)= c; 
 T(0,2)= s; 
 T(2,0)= -s; 
 T(2,2)= c; 
 
 return T; 
} 

 

/* This function gives the homogeneous transformation matrix, given the rotation angle 
about the Z axis. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "Rotz.h" 
using namespace std; 
using namespace math; 
 
Matrix WMRA_rotz(float t){ 
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 Matrix T(4,4); 
 
 float c, s; 
 c=cos(t); 
 s=sin(t); 
 T.Unit(4); 
 T(0,0)= c; 
 T(0,1)= -s; 
 T(1,0)= s; 
 T(1,1)= c; 
 
 return T; 
 
} 

 
/* This function returns the sign of a variable. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Developed By: Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
#include <iostream> 
#include <math.h> 
#include "sign.h" 
using namespace std; 
 
int sign(float x){ 
 int y; 
 if (x>0){ 
  y=1; 
 } 
 else if (x==0){ 
  y=0; 
 } 
 else { 
  y=-1; 
 } 
 return y; 
} 
/* This function gives the Roll, Pitch, Taw angles, given the transformation matrix. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "T2rpy.h" 
using namespace std; 
using namespace math; 
 
Matrix WMRA_T2rpy(Matrix T){ 
 
 Matrix rpy(3,1);  
 rpy.Null(3,1); 
 float c, s; 
  
 //Making sure there is no singularity: 
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if (abs(T(0,0))<EPS && abs(T(1,0))<EPS){ 
  rpy(0,0)=0; 
  rpy(1,0)=atan2(-T(2,0), T(0,0)); 
  rpy(2,0)=atan2(-T(1,2), T(1,1)); 
 } 
 else{ 
  rpy(0,0)=atan2(T(1,0), T(0,0)); 
  s=sin(rpy(0,0)); 
  c=cos(rpy(0,0)); 
  rpy(1,0)=atan2(-T(2,0), c*T(0,0)+s*T(1,0)); 
  rpy(2,0)=atan2(s*T(0,2)-c*T(1,2), c*T(1,1)-s*T(0,1)); 
 } 
 
 return rpy; 
} 
 
 
/* This function is for getting the transformations of the USF WMRA with 9 DOF. 
q is for the 7 joints in radians, and dq is for the wheelchair only in millimeters and 
radians. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "DH.h" 
#include "Rotx.h" 
#include "Rotz.h" 
#include "Transl.h" 
#include "w2T.h" 
#include "Tall.h" 
using namespace std; 
using namespace math; 
 
void WMRA_Tall(int i, Matrix q, Matrix dq, Matrix Twc, Matrix& T, Matrix& Ta, Matrix& 
Twco, Matrix& T1, Matrix& T2, Matrix& T3, Matrix& T4, Matrix& T5, Matrix& T6, Matrix& 
T7){ 
   
 // Inputting the D-H Parameters in a Matrix form: 
 extern Matrix DH; 
  
 if (i==1){ 
  DH=WMRA_DH(q); 
  //Calculating the transformation matrices of each link: 
  //T1 
  T1 = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(DH(0,3))*WMRA_transl(0,0,DH(0,2)); 
  //T2 
  T2 = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(DH(1,3))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
  T3 = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(DH(2,3))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
  T4 = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(DH(3,3))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
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T5 = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(DH(4,3))*WMRA_transl(0,0,DH(
4,2)); 

  //T6 
  T6 = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(DH(5,3))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T7 = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(DH(6,3))*WMRA_transl(0,0,DH(6,2)); 
 
  //Calculating the Transformation Matrix of the initial arm position: 
 
  Ta=T1*T2*T3*T4*T5*T6*T7; 
   
  //Calculating the Transformation Matrix of the initial WMRA system 
position: 
  Twco=Twc; 
  T=Twc*Ta; 
 } 
 

else{ 
   
  //T1 
  T1 = 
WMRA_rotx(DH(0,0))*WMRA_transl(DH(0,1),0,0)*WMRA_rotz(q(0,0))*WMRA_transl(0,0,DH(0,2)); 
  //T2 
  T2 = 
WMRA_rotx(DH(1,0))*WMRA_transl(DH(1,1),0,0)*WMRA_rotz(q(1,0))*WMRA_transl(0,0,DH(1,2)); 
  //T3 
  T3 = 
WMRA_rotx(DH(2,0))*WMRA_transl(DH(2,1),0,0)*WMRA_rotz(q(2,0))*WMRA_transl(0,0,DH(2,2)); 
  //T4 
  T4 = 
WMRA_rotx(DH(3,0))*WMRA_transl(DH(3,1),0,0)*WMRA_rotz(q(3,0))*WMRA_transl(0,0,DH(3,2)); 
  //T5 
  T5 = 
WMRA_rotx(DH(4,0))*WMRA_transl(DH(4,1),0,0)*WMRA_rotz(q(4,0))*WMRA_transl(0,0,DH(4,2)); 
  //T6 
  T6 = 
WMRA_rotx(DH(5,0))*WMRA_transl(DH(5,1),0,0)*WMRA_rotz(q(5,0))*WMRA_transl(0,0,DH(5,2)); 
  //T7 
  T7 = 
WMRA_rotx(DH(6,0))*WMRA_transl(DH(6,1),0,0)*WMRA_rotz(q(6,0))*WMRA_transl(0,0,DH(6,2)); 
 
  //Calculating the Transformation Matrix of the initial arm position: 
 
  Ta=T1*T2*T3*T4*T5*T6*T7; 
  Twc = WMRA_w2T(1, Twc, dq); 
  Twco=Twc; 
  T=Twc*Ta; 
 } 
} 
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/* This function finds the trajectory points along a streight line, given the initial and 
final transformations. Single-angle rotation about a single axis is used 
See Eqs. 1.73-1.103 pages 30-32 of Richard Paul's book " Robot Manipulators" 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
#include "matrix.h"   
#include "vector.h" 
#include "Polynomial.h" 
#include "Linear.h" 
#include "BPolynomial.h" 
#include "sign.h" 
#include "Traj.h" 
using namespace std; 
using namespace math; 
 
float ***WMRA_traj(int ind, Matrix Ti, Matrix Td, int n){ 
 
 float ***Tt; 
  
 //Finding the rotation of the desired point based on the initial point: 
 Matrix R(3,3), Titemp(3,3),Tdtemp(3,3); 
 int i,j,m; 
 for ( i=0 ; i < 3 ; i++ ) { 
  for ( j = 0 ; j < 3 ; j++ ) { 
   Titemp(i,j)=Ti(i,j); 
 
Tdtemp(i,j)=Td(i,j); 
  } 
 }  
 Titemp=~Titemp; 
 R=Titemp*Tdtemp; 
  
 //Initial single-angle representation of the rotation: 
 float a, s, c, v; 
 a=atan2(sqrt(pow((R(2,1)-R(1,2)),2)+pow((R(0,2)-R(2,0)),2)+pow((R(1,0)-
R(0,1)),2)),(R(0,0)+R(1,1)+R(2,2)-1)); 
 s=sin(a); 
 c=cos(a); 
 v=1-c; 
  
 //Finding the single-vector components for the rotation: 
 float kx, ky, kz; 
 if (a<0.001){ 
  kx=1; 
  ky=0; 
  kz=0; 
 } 
 else if (a<PI/2+0.001){ 
  kx=(R(2,1)-R(1,2))/(2*s); 
  ky=(R(0,2)-R(2,0))/(2*s); 
  kz=(R(1,0)-R(0,1))/(2*s); 
 }  
 else { 
  kx=sign((R(2,1)-R(1,2)))*sqrt((R(0,0)-c)/v); 
  ky=sign((R(0,2)-R(2,0)))*sqrt((R(1,1)-c)/v); 
  kz=sign((R(1,0)-R(0,1)))*sqrt((R(2,2)-c)/v); 
  if (kx>ky && kx>kz){ 
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  ky=(R(1,0)+R(0,1))/(2*kx*v); 
   kz=(R(0,2)+R(2,0))/(2*kx*v); 
  } 
  else if (ky>kx && ky>kz){ 
   kx=(R(1,0)+R(0,1))/(2*ky*v); 
   kz=(R(2,1)+R(1,2))/(2*ky*v); 
  } 
  else { 
   kx=(R(0,2)+R(2,0))/(2*kz*v); 
   ky=(R(2,1)+R(1,2))/(2*kz*v); 
  } 
 } 
  
 // Running the desired trajectory method:  
 // 1 == Polynomial with Blending function, 
 // 2 == Polynomial without Blending function, 
 // 3 == Linear function. 
 Matrix at(n,1), xt(n,1), yt(n,1), zt(n,1); 
 Titemp=~Titemp; 
 if (ind == 2){ 
  at=WMRA_Polynomial(0,a,n); 
  xt=WMRA_Polynomial(Ti(0,3), Td(0,3), n); 
  yt=WMRA_Polynomial(Ti(1,3), Td(1,3), n); 
  zt=WMRA_Polynomial(Ti(2,3), Td(2,3), n); 
 } 
 else if (ind == 3) { 
  at=WMRA_Linear(0,a,n); 
  xt=WMRA_Linear(Ti(0,3), Td(0,3), n); 
  yt=WMRA_Linear(Ti(1,3), Td(1,3), n); 
  zt=WMRA_Linear(Ti(2,3), Td(2,3), n); 
 } 
 else { 
  at=WMRA_BPolynomial(0,a,n); 
  xt=WMRA_BPolynomial(Ti(0,3), Td(0,3), n); 
  yt=WMRA_BPolynomial(Ti(1,3), Td(1,3), n); 
   

zt=WMRA_BPolynomial(Ti(2,3), Td(2,3), n); 
 } 
  
 Tt = new float**[n]; 
 for (i = 0; i < n; ++i) { 
  Tt[i] = new float*[4]; 
  for (j = 0; j < 4; ++j){ 
   Tt[i][j] = new float[4]; 
  } 
 } 
 for ( i=0 ; i < 4 ; i++ ) { 
  for ( j = 0 ; j < 4 ; j++ ) { 
   Tt[0][i][j]=Ti(i,j); 
  } 
 } 
 
 for (i=1; i<n; i++){ 
  // Single-angle Change: 
  float da; 
  da=at(i,0)-at(0,0); 
  s=sin(da); 
  c=cos(da); 
  v=1-c; 
  // Rotation and Position Change: 
   
  Matrix dR(3,3); 
  dR(0,0)=pow(kx,2)*v+c; 
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dR(0,1)=kx*ky*v-kz*s; 
  dR(0,2)=kx*kz*v+ky*s; 
  dR(1,0)=kx*ky*v+kz*s; 
  dR(1,1)=pow(ky,2)*v+c; 
  dR(1,2)=ky*kz*v-kx*s; 
  dR(2,0)=kx*kz*v-ky*s; 
  dR(2,1)=ky*kz*v+kx*s; 
  dR(2,2)=pow(kz,2)*v+c; 
   
  //Finding the trajectory points along the trajectory line: 
  Matrix Tti1(3,3),Tti(4,4); 
  Tti1 = Titemp * dR; 
  Tti.Unit(4); 
  for ( m=0 ; m < 3 ; m++ ) { 
   for ( j = 0 ; j < 3 ; j++ ) { 
    Tti(m,j)=Tti1(m,j); 
   } 
  } 
  Tti(0,3)=xt(i,0); 
  Tti(1,3)=yt(i,0); 
  Tti(2,3)=zt(i,0); 
   
  for ( m=0 ; m < 4 ; m++ ) { 
   for ( j = 0 ; j < 4 ; j++ ) { 
    Tt[i][m][j]=Tti(m,j); 
   } 
  } 
 } 
  
  return Tt; 

} 

 
/* This function gives the homogeneous transformation matrix, given the X, Y, Z cartesian 
translation values. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "Transl.h" 
using namespace std; 
using namespace math; 
 
Matrix WMRA_transl(float x, float y, float z){ 
  
 Matrix T(4,4); 
 
 T.Unit(4); 
 T(0,3)= x; 
 T(1,3)= y; 
 T(2,3)= z; 
 
 return T; 
} 
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 * vector.cpp 
 * 
 *  Created on: Aug 28, 2009 
 *%%%%% Developed by: Garret Pence%%%%%%%%%% 
 */ 
 
#include <iostream> 
#include "vector.h" 
 
using namespace std; 
 
vector::vector() 
{ 
 x = 0; 
 y = 0; 
 z = 0; 
} 
 
vector::vector(double m, double n, double o) 
{ 
 x = m; 
 y = n; 
 z = o; 
} 
 
vector crossProduct(vector a, vector b) 
{ 
 double i, j, k; 
 vector c; 
 
 i = (a.y * b.z - a.z * b.y); 
 j = (a.x * b.z - a.z * b.x) * -1; 
 k = (a.x * b.y - a.y * b.x); 
 
 c.x = i; 
 c.y = j; 

c.z = k; 
 
 return c; 

} 

/* This function gives the Transformation Matrix of the wheelchair with 2 DOF (Ground to 
WMRA base), given the previous transformation matrix and the required wheelchair's travel 
distance and angle. 
Dimentions are as supplies, angles are in radians. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "vector.h" 
#include "WCD.h" 
#include "w2T.h" 
using namespace std; 
using namespace math; 
 
Matrix WMRA_w2T(int ind, Matrix Tp, Matrix q){ 
 
 Matrix T(4,4); 
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Matrix L(1,1); 
 // Reading the Wheelchair's constant dimentions, all dimentions are converted in 
millimeters: 
 L=WMRA_WCD(); 
 // Deciding if the motion is in reference to the arm base (1) or the wheel axle 
center (0): 
 int i;  
 if (ind==0){ 
  for (i=1; i<4; i++){ 
   L(0,i) = 0; 
  } 
 } 
  
 // Defining the inverse of Transformation Matrix between the wheelchair center and 
the WMRA's base: 
 Matrix Twa(4,4), Twainv(4,4); 
 Twa.Unit(4); 
 for (i=0; i<3; i++){ 
  Twa(i,3) = L(0,i+1); 
 } 
  
 // The previous transformation matrix from the ground to the wheelchair center: 
 Twainv = !Twa; 
 Tp = Tp * Twainv; 
 
 // Defining the Transformation Matrix between the ground and the wheelchair center 
and WMRA's base: 
 if (abs(q(1,0))<=EPS){          // Streight line motion. 
  for (i=0; i<2; i++){ 
   Tp(i,3)= Tp(i,3) + q(0,0)*Tp(i,0); 
  } 
  T = Tp * Twa; 
 } 
 else { 
  float po, p, r; 
  po=atan2(Tp(1,0),Tp(0,0)); 
  p=q(1,0); 
  r=q(0,0)/p-L(0,0)/2; 

Matrix Tgw(4,4); 
  Tgw.Unit(4); 
  Tgw(0,0)= cos(po+p); 
  Tgw(0,1)= -sin(po+p); 
  Tgw(0,3)= Tp(0,3)+sin(PI/2+po+p/2)*(r+L(0,0)/2)*sin(p)/cos(p/2); 
  Tgw(1,0)= sin(po+p); 
  Tgw(1,1)= cos(po+p); 
  Tgw(1,3)= Tp(1,3)-cos(PI/2+po+p/2)*(r+L(0,0)/2)*sin(p)/cos(p/2); 
  Tgw(2,3)= Tp(2,3); 
 
  T= Tgw * Twa; 
 } 
 
 return T; 
} 
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/* This function gives the wheelchair dimentions matrix to be used in the program.  
Modifying the dimentons on this file is sufficient to change these dimention in all 
related programs. 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%%%%%%%%%%%%%%%%%%%% Developed By: Redwan M. Alqasemi %%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%% Modified By:Ana Catalina Torres %%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Function Declaration:*/ 
 
#include "matrix.h"   
#include "WCD.h"  
using namespace std; 
using namespace math; 
 
Matrix WMRA_WCD(){ 
 
 Matrix L(1,5); 
 int Ltemp[5] = {500,400,230,200,170}; 
 int i; 
 for (i=0; i < 5; i++){ 
  L(0,i) = Ltemp[i]; 
 } 
 
 // All dimentions are in millimeters. 
 //L(0,0)=560;  // Distance between the two driving wheels. 
 //L(0,1)=440;  // Horizontal distance between the wheels axix of rotation and the 
arm mounting position (along x). 
 //L(0,2)=230;  // Horizontal distance between the middle point between the two 
driving wheels and the arm mounting position (along y). 
 //L(0,3)=182;  // Vertical distance between the wheels axix of rotation and the 
arm mounting position (along z). 
 //L(0,4)=168;  // Radius of the driving wheels. 
   
 return L; 
} 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% COPY RIGHTS RESERVED %%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% Developed By: Punya A. Basnayaka & Ana Catalina Torres%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% April 2010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
#pragma once 
 
double VAR_DX[7]={0.0}; 
 
double varscreenopn; 
 
using namespace System; 
using namespace System::ComponentModel; 
using namespace System::Collections; 
using namespace System::Windows::Forms; 
using namespace System::Data; 
using namespace System::Drawing; 
 
 
namespace Touch { 
 
 /// <summary> 
 /// Summary for Form1 
 /// 
 /// WARNING: If you change the name of this class, you will need to change the 
 ///          'Resource File Name' property for the managed resource compiler tool 
 ///          associated with all .resx files this class depends on.  Otherwise, 
 ///          the designers will not be able to interact properly with localized 
 ///          resources associated with this form. 
 /// </summary> 
 public ref class Form1 : public System::Windows::Forms::Form 
 { 
 public: 
  Form1(void) 
  { 
   InitializeComponent(); 
   // 
   //TODO: Add the constructor code here 
   // 
  } 
 
 protected: 
  /// <summary> 
  /// Clean up any resources being used. 
  /// </summary> 
  ~Form1() 
  { 
   if (components) 
   { 
    delete components; 
   } 
  } 
 
 protected:  
 
 private: System::Windows::Forms::GroupBox^  groupBox3; 
 private: System::Windows::Forms::Button^  button3; 
 
 private: System::Windows::Forms::GroupBox^  groupBox2; 
 private: System::Windows::Forms::GroupBox^  groupBox1; 
 private: System::Windows::Forms::CheckBox^  checkBox1; 
  
 private: System::Windows::Forms::Button^  button4; 
 private: System::Windows::Forms::Button^  button2; 
 private: System::Windows::Forms::Button^  button1; 
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private: System::Windows::Forms::CheckBox^  checkBox6; 
 private: System::Windows::Forms::CheckBox^  checkBox5; 

private: System::Windows::Forms::CheckBox^  checkBox4; 
 private: System::Windows::Forms::CheckBox^  checkBox3; 
 private: System::Windows::Forms::CheckBox^  checkBox2; 
 private: System::Windows::Forms::CheckBox^  checkBox14; 
 private: System::Windows::Forms::CheckBox^  checkBox13; 
 private: System::Windows::Forms::CheckBox^  checkBox12; 
 private: System::Windows::Forms::CheckBox^  checkBox11; 
 private: System::Windows::Forms::CheckBox^  checkBox10; 
 private: System::Windows::Forms::CheckBox^  checkBox9; 
 private: System::Windows::Forms::CheckBox^  checkBox8; 
 private: System::Windows::Forms::CheckBox^  checkBox7; 
 
 private: 
  /// <summary> 
  /// Required designer variable. 
  /// </summary> 
  System::ComponentModel::Container ^components; 
 
#pragma region Windows Form Designer generated code 
  /// <summary> 
  /// Required method for Designer support - do not modify 
  /// the contents of this method with the code editor. 
  /// </summary> 
  void InitializeComponent(void) 
  { 
   System::ComponentModel::ComponentResourceManager^  resources = 
(gcnew System::ComponentModel::ComponentResourceManager(Form1::typeid)); 
   this->groupBox3 = (gcnew System::Windows::Forms::GroupBox()); 
   this->checkBox14 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox13 = (gcnew System::Windows::Forms::CheckBox()); 
   this->button3 = (gcnew System::Windows::Forms::Button()); 
   this->groupBox2 = (gcnew System::Windows::Forms::GroupBox()); 
   this->checkBox12 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox11 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox10 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox9 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox8 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox7 = (gcnew System::Windows::Forms::CheckBox()); 
   this->groupBox1 = (gcnew System::Windows::Forms::GroupBox()); 
   this->checkBox6 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox5 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox4 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox3 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox2 = (gcnew System::Windows::Forms::CheckBox()); 
   this->checkBox1 = (gcnew System::Windows::Forms::CheckBox()); 
   this->button4 = (gcnew System::Windows::Forms::Button()); 
   this->button2 = (gcnew System::Windows::Forms::Button()); 
   this->button1 = (gcnew System::Windows::Forms::Button()); 
   this->groupBox3->SuspendLayout(); 
   this->groupBox2->SuspendLayout(); 
   this->groupBox1->SuspendLayout(); 
   this->SuspendLayout(); 
   //  
   // groupBox3 
   //  
   this->groupBox3->Controls->Add(this->checkBox14); 
   this->groupBox3->Controls->Add(this->checkBox13); 
   this->groupBox3->Controls->Add(this->button3); 
   this->groupBox3->Location = System::Drawing::Point(237, 232); 
   this->groupBox3->Name = L"groupBox3"; 
   this->groupBox3->Size = System::Drawing::Size(289, 111); 
   this->groupBox3->TabIndex = 9; 
   this->groupBox3->TabStop = false; 
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this->checkBox14->Appearance = 
System::Windows::Forms::Appearance::Button; 

   this->checkBox14->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox14.BackgroundImage"))); 
   this->checkBox14->Location = System::Drawing::Point(201, 22); 
   this->checkBox14->Name = L"checkBox14"; 
   this->checkBox14->Size = System::Drawing::Size(68, 69); 
   this->checkBox14->TabIndex = 1; 
   this->checkBox14->UseVisualStyleBackColor = true; 
   this->checkBox14->CheckedChanged += gcnew 
System::EventHandler(this, &Form1::checkBox14_CheckedChanged); 
   //  
   // checkBox13 
   //  
   this->checkBox13->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox13->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox13.BackgroundImage"))); 
   this->checkBox13->Location = System::Drawing::Point(111, 22); 
   this->checkBox13->Name = L"checkBox13"; 
   this->checkBox13->Size = System::Drawing::Size(68, 69); 
   this->checkBox13->TabIndex = 1; 
   this->checkBox13->UseVisualStyleBackColor = true; 
   this->checkBox13->CheckedChanged += gcnew 
System::EventHandler(this, &Form1::checkBox13_CheckedChanged); 
   //  
   // button3 
   //  
   this->button3->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"button3.BackgroundImage"))); 
   this->button3->BackgroundImageLayout = 
System::Windows::Forms::ImageLayout::Zoom; 
   this->button3->Location = System::Drawing::Point(22, 22); 
   this->button3->Name = L"button3"; 
   this->button3->Size = System::Drawing::Size(68, 69); 
   this->button3->TabIndex = 0; 
   this->button3->UseVisualStyleBackColor = true; 
   this->button3->Click += gcnew System::EventHandler(this, 
&Form1::button3_Click); 
   //  
   // groupBox2 
   //  
   this->groupBox2->Controls->Add(this->checkBox12); 
   this->groupBox2->Controls->Add(this->checkBox11); 
   this->groupBox2->Controls->Add(this->checkBox10); 
   this->groupBox2->Controls->Add(this->checkBox9); 
   this->groupBox2->Controls->Add(this->checkBox8); 
   this->groupBox2->Controls->Add(this->checkBox7); 
   this->groupBox2->Location = System::Drawing::Point(237, 13); 
   this->groupBox2->Name = L"groupBox2"; 
   this->groupBox2->Size = System::Drawing::Size(289, 213); 
   this->groupBox2->TabIndex = 8; 
   this->groupBox2->TabStop = false; 
   this->groupBox2->Text = L"Gripper Orientation"; 
   //  
   // checkBox12 
   //  
   this->checkBox12->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox12->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox12.BackgroundImage"))); 
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this->checkBox12->Location = System::Drawing::Point(201, 127); 
   this->checkBox12->Name = L"checkBox12"; 
   this->checkBox12->Size = System::Drawing::Size(68, 69); 
   this->checkBox12->TabIndex = 1; 
   this->checkBox12->UseVisualStyleBackColor = true; 
   this->checkBox12->CheckedChanged += gcnew 
System::EventHandler(this, &Form1::checkBox12_CheckedChanged); 
   //  
   // checkBox11 
   //  
   this->checkBox11->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox11->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox11.BackgroundImage"))); 
   this->checkBox11->Location = System::Drawing::Point(111, 127); 
   this->checkBox11->Name = L"checkBox11"; 
   this->checkBox11->Size = System::Drawing::Size(68, 69); 
   this->checkBox11->TabIndex = 1; 
   this->checkBox11->UseVisualStyleBackColor = true; 
   this->checkBox11->CheckedChanged += gcnew 
System::EventHandler(this, &Form1::checkBox11_CheckedChanged); 
   //  
   // checkBox10 
   //  
   this->checkBox10->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox10->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox10.BackgroundImage"))); 
   this->checkBox10->Location = System::Drawing::Point(22, 127); 
   this->checkBox10->Name = L"checkBox10"; 
   this->checkBox10->Size = System::Drawing::Size(68, 69); 
   this->checkBox10->TabIndex = 1; 
   this->checkBox10->UseVisualStyleBackColor = true; 
   this->checkBox10->CheckedChanged += gcnew 
System::EventHandler(this, &Form1::checkBox10_CheckedChanged); 
   //  
   // checkBox9 
   //  
   this->checkBox9->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox9->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox9.BackgroundImage"))); 
   this->checkBox9->Location = System::Drawing::Point(201, 19); 
   this->checkBox9->Name = L"checkBox9"; 
   this->checkBox9->Size = System::Drawing::Size(68, 69); 
   this->checkBox9->TabIndex = 1; 
   this->checkBox9->UseVisualStyleBackColor = true; 
   this->checkBox9->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox9_CheckedChanged); 
   //  
   // checkBox8 
   //  
   this->checkBox8->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox8->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox8.BackgroundImage"))); 
   this->checkBox8->Location = System::Drawing::Point(111, 19); 
   this->checkBox8->Name = L"checkBox8"; 
   this->checkBox8->Size = System::Drawing::Size(68, 69); 
   this->checkBox8->TabIndex = 1; 
   this->checkBox8->UseVisualStyleBackColor = true; 
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this->checkBox8->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox8_CheckedChanged); 

   //  
   // checkBox7 
  
   //  
   this->checkBox7->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox7->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox7.BackgroundImage"))); 
   this->checkBox7->Location = System::Drawing::Point(22, 19); 
   this->checkBox7->Name = L"checkBox7"; 
   this->checkBox7->Size = System::Drawing::Size(68, 69); 
   this->checkBox7->TabIndex = 1; 
   this->checkBox7->UseVisualStyleBackColor = true; 
   this->checkBox7->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox7_CheckedChanged); 
   //  
   // groupBox1 
   //  
   this->groupBox1->Controls->Add(this->checkBox6); 
   this->groupBox1->Controls->Add(this->checkBox5); 
   this->groupBox1->Controls->Add(this->checkBox4); 
   this->groupBox1->Controls->Add(this->checkBox3); 
   this->groupBox1->Controls->Add(this->checkBox2); 
   this->groupBox1->Controls->Add(this->checkBox1); 
   this->groupBox1->Location = System::Drawing::Point(12, 13); 
   this->groupBox1->Name = L"groupBox1"; 
   this->groupBox1->Size = System::Drawing::Size(206, 330); 
   this->groupBox1->TabIndex = 7; 
   this->groupBox1->TabStop = false; 
   this->groupBox1->Text = L"Gripper  Possition"; 
   //  
   // checkBox6 
   //  
   this->checkBox6->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox6->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox6.BackgroundImage"))); 
   this->checkBox6->Location = System::Drawing::Point(114, 241); 
   this->checkBox6->Name = L"checkBox6"; 
   this->checkBox6->Size = System::Drawing::Size(68, 69); 
   this->checkBox6->TabIndex = 1; 
   this->checkBox6->UseVisualStyleBackColor = true; 
   this->checkBox6->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox6_CheckedChanged); 
   //  
   // checkBox5 
   //  
   this->checkBox5->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox5->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox5.BackgroundImage"))); 
   this->checkBox5->Location = System::Drawing::Point(25, 241); 
   this->checkBox5->Name = L"checkBox5"; 
   this->checkBox5->Size = System::Drawing::Size(68, 69); 
   this->checkBox5->TabIndex = 1; 
   this->checkBox5->UseVisualStyleBackColor = true; 
   this->checkBox5->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox5_CheckedChanged); 
   //  
   // checkBox4 
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   this->checkBox4->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox4->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox4.BackgroundImage"))); 
   this->checkBox4->Location = System::Drawing::Point(114, 127); 
    

this->checkBox4->Name = L"checkBox4"; 
   this->checkBox4->Size = System::Drawing::Size(68, 69); 
   this->checkBox4->TabIndex = 1; 
   this->checkBox4->UseVisualStyleBackColor = true; 
   this->checkBox4->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox4_CheckedChanged); 
   //  
   // checkBox3 
   //  
   this->checkBox3->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox3->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox3.BackgroundImage"))); 
   this->checkBox3->Location = System::Drawing::Point(25, 127); 
   this->checkBox3->Name = L"checkBox3"; 
   this->checkBox3->Size = System::Drawing::Size(68, 69); 
   this->checkBox3->TabIndex = 1; 
   this->checkBox3->UseVisualStyleBackColor = true; 
   this->checkBox3->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox3_CheckedChanged); 
   //  
   // checkBox2 
   //  
   this->checkBox2->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox2->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox2.BackgroundImage"))); 
   this->checkBox2->Location = System::Drawing::Point(114, 19); 
   this->checkBox2->Name = L"checkBox2"; 
   this->checkBox2->Size = System::Drawing::Size(68, 69); 
   this->checkBox2->TabIndex = 1; 
   this->checkBox2->UseVisualStyleBackColor = true; 
   this->checkBox2->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox2_CheckedChanged); 
   //  
   // checkBox1 
   //  
   this->checkBox1->Appearance = 
System::Windows::Forms::Appearance::Button; 
   this->checkBox1->BackgroundImage = 
(cli::safe_cast<System::Drawing::Image^  >(resources-
>GetObject(L"checkBox1.BackgroundImage"))); 
   this->checkBox1->Location = System::Drawing::Point(25, 19); 
   this->checkBox1->Name = L"checkBox1"; 
   this->checkBox1->Size = System::Drawing::Size(68, 69); 
   this->checkBox1->TabIndex = 1; 
   this->checkBox1->UseVisualStyleBackColor = true; 
   this->checkBox1->CheckedChanged += gcnew System::EventHandler(this, 
&Form1::checkBox1_CheckedChanged); 
   //  
   // button4 
   //  
   this->button4->Font = (gcnew System::Drawing::Font(L"Microsoft Sans 
Serif", 10, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point,  
    static_cast<System::Byte>(0))); 
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this->button4->Location = System::Drawing::Point(351, 357); 
   this->button4->Name = L"button4"; 
   this->button4->Size = System::Drawing::Size(75, 30); 
   this->button4->TabIndex = 5; 
   this->button4->Text = L"Run"; 
   this->button4->UseVisualStyleBackColor = true; 
   this->button4->Click += gcnew System::EventHandler(this, 
&Form1::button4_Click); 
   //  
   // button2 
   
   //  
   this->button2->Enabled = false; 
   this->button2->Font = (gcnew System::Drawing::Font(L"Microsoft Sans 
Serif", 10, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point,  
    static_cast<System::Byte>(0))); 
   this->button2->Location = System::Drawing::Point(12, 357); 
   this->button2->Name = L"button2"; 
   this->button2->Size = System::Drawing::Size(78, 30); 
   this->button2->TabIndex = 6; 
   this->button2->Text = L"Back"; 
   this->button2->UseVisualStyleBackColor = true; 
   //  
   // button1 
   //  
   this->button1->Font = (gcnew System::Drawing::Font(L"Microsoft Sans 
Serif", 10, System::Drawing::FontStyle::Bold, System::Drawing::GraphicsUnit::Point,  
    static_cast<System::Byte>(0))); 
   this->button1->Location = System::Drawing::Point(451, 357); 
   this->button1->Name = L"button1"; 
   this->button1->Size = System::Drawing::Size(75, 30); 
   this->button1->TabIndex = 5; 
   this->button1->Text = L"Exit"; 
   this->button1->UseVisualStyleBackColor = true; 
   this->button1->Click += gcnew System::EventHandler(this, 
&Form1::button1_Click); 
   //  
   // Form1 
   //  
   this->AutoScaleDimensions = System::Drawing::SizeF(6, 13); 
   this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font; 
   this->ClientSize = System::Drawing::Size(539, 401); 
   this->ControlBox = false; 
   this->Controls->Add(this->groupBox3); 
   this->Controls->Add(this->groupBox2); 
   this->Controls->Add(this->groupBox1); 
   this->Controls->Add(this->button4); 
   this->Controls->Add(this->button2); 
   this->Controls->Add(this->button1); 
   this->MaximizeBox = false; 
   this->Name = L"Form1"; 
   this->Text = L"WMRA Screen"; 
   this->Load += gcnew System::EventHandler(this, &Form1::Form1_Load); 
   this->groupBox3->ResumeLayout(false); 
   this->groupBox2->ResumeLayout(false); 
   this->groupBox1->ResumeLayout(false); 
   this->ResumeLayout(false); 
 
  } 
#pragma endregion 
 private: System::Void checkBox1_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
     switch(checkBox1->CheckState) { 
   case CheckState::Checked: 
    // Code for checked state. 
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 this->checkBox1->FlatStyle = FlatStyle::Flat; 
    this->checkBox1->FlatAppearance->BorderSize=2; 
    this->checkBox1->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox5->Enabled=false; 
    VAR_DX[2]=1;      
    break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox1->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox5->Enabled=true; 
    VAR_DX[2]=0;      
            break; 
 
         

 case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[2]=0; 
    this->checkBox1->FlatStyle = FlatStyle::Standard;  
   break; 
      } 
    } 
private: System::Void checkBox2_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox2->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox2->FlatStyle = FlatStyle::Flat; 
    this->checkBox2->FlatAppearance->BorderSize=2; 
    this->checkBox2->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox6->Enabled=false; 
    VAR_DX[0]=1;      
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox2->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox6->Enabled=true; 
    VAR_DX[0]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[0]=0;     
    this->checkBox2->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void checkBox3_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox3->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox3->FlatStyle = FlatStyle::Flat; 
    this->checkBox3->FlatAppearance->BorderSize=2; 
    this->checkBox3->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox4->Enabled=false; 
    VAR_DX[1]=1; 
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox3->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox4->Enabled=true; 
    VAR_DX[1]=0; 
            break; 
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 case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[1]=0; 
    this->checkBox3->FlatStyle = FlatStyle::Standard;    
   break; 
      } 
   } 
private: System::Void checkBox4_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox4->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox4->FlatStyle = FlatStyle::Flat; 
    this->checkBox4->FlatAppearance->BorderSize=2; 
    this->checkBox4->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox3->Enabled=false; 
    VAR_DX[1]=-1; 
         
     break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox4->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox3->Enabled=true; 
    VAR_DX[1]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[1]=0; 
    this->checkBox4->FlatStyle = FlatStyle::Standard;    
   break; 
      } 
   } 
private: System::Void checkBox5_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox5->CheckState) { 
   case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox5->FlatStyle = FlatStyle::Flat; 
    this->checkBox5->FlatAppearance->BorderSize=2; 
    this->checkBox5->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox1->Enabled=false; 
    VAR_DX[2]=-1;     
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox5->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox1->Enabled=true; 
    VAR_DX[2]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[2]=0; 
    this->checkBox5->FlatStyle = FlatStyle::Standard;   
            break; 
      } 
   } 
private: System::Void checkBox6_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox6->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox6->FlatStyle = FlatStyle::Flat; 
    this->checkBox6->FlatAppearance->BorderSize=2; 
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 this->checkBox2->Enabled=false; 
    VAR_DX[0]=-1;  
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox6->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox2->Enabled=true; 
    VAR_DX[0]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[0]=0;     
    this->checkBox6->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void checkBox7_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
 
    
     switch(checkBox7->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox7->FlatStyle = FlatStyle::Flat; 
    this->checkBox7->FlatAppearance->BorderSize=2; 
    this->checkBox7->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox9->Enabled=false; 
    VAR_DX[5]=0.003;  
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox7->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox9->Enabled=true; 
    VAR_DX[5]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[5]=0;     
    this->checkBox7->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void checkBox8_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox8->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox8->FlatStyle = FlatStyle::Flat; 
    this->checkBox8->FlatAppearance->BorderSize=2; 
    this->checkBox8->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox11->Enabled=false; 
    VAR_DX[4]=0.003;    
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox8->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox11->Enabled=true; 
    VAR_DX[4]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[4]=0;     
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 this->checkBox8->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void checkBox9_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox9->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox9->FlatStyle = FlatStyle::Flat; 
    this->checkBox9->FlatAppearance->BorderSize=2; 
    this->checkBox9->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox7->Enabled=false; 
    VAR_DX[5]=-0.003;      
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox9->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox7->Enabled=true; 
    VAR_DX[5]=0; 
            break; 
         case CheckState::Indeterminate: 
  // Code for indeterminate state. 
    VAR_DX[5]=0;     
    this->checkBox9->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void checkBox10_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox10->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox10->FlatStyle = FlatStyle::Flat; 
    this->checkBox10->FlatAppearance->BorderSize=2; 
    this->checkBox10->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox12->Enabled=false; 
    VAR_DX[3]=-0.003;    
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox10->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox12->Enabled=true; 
    VAR_DX[3]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[3]=0;     
    this->checkBox10->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void checkBox11_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox11->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox11->FlatStyle = FlatStyle::Flat; 
    this->checkBox11->FlatAppearance->BorderSize=2; 
    this->checkBox11->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox8->Enabled=false; 
    VAR_DX[4]=-0.003;  
            break; 
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  case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox11->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox8->Enabled=true; 
    VAR_DX[4]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[4]=0;     
    this->checkBox11->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void checkBox12_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
    switch(checkBox12->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox12->FlatStyle = FlatStyle::Flat; 
    this->checkBox12->FlatAppearance->BorderSize=2; 
    this->checkBox12->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox10->Enabled=false; 
    VAR_DX[3]=0.003;     
            break; 
 
        
  case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox12->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox10->Enabled=true; 
    VAR_DX[3]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[3]=0;     
    this->checkBox12->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void button3_Click(System::Object^  sender, System::EventArgs^  e) { 
    VAR_DX[0]=0; 
    VAR_DX[1]=0; 
    VAR_DX[2]=0; 
    VAR_DX[3]=0; 
    VAR_DX[4]=0; 
    VAR_DX[5]=0; 
    VAR_DX[6]=0; 
    varscreenopn=1; 
     
    this->checkBox1->Enabled=true; 
    this->checkBox2->Enabled=true; 
    this->checkBox3->Enabled=true; 
    this->checkBox4->Enabled=true; 
    this->checkBox5->Enabled=true; 
    this->checkBox6->Enabled=true; 
    this->checkBox7->Enabled=true; 
    this->checkBox8->Enabled=true; 
    this->checkBox9->Enabled=true; 
    this->checkBox10->Enabled=true; 
    this->checkBox11->Enabled=true; 
    this->checkBox12->Enabled=true; 
    this->checkBox13->Enabled=true; 
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     this->checkBox14->Enabled=true; 
    this->checkBox1->Checked = false; 
    this->checkBox2->Checked = false; 
    this->checkBox3->Checked = false; 
    this->checkBox4->Checked = false; 
    this->checkBox5->Checked = false; 
    this->checkBox6->Checked = false; 
    this->checkBox7->Checked = false; 
    this->checkBox8->Checked = false; 
    this->checkBox9->Checked = false; 
    this->checkBox10->Checked = false; 
    this->checkBox11->Checked = false; 
    this->checkBox12->Checked = false; 
    this->checkBox13->Checked = false; 
    this->checkBox14->Checked = false; 
    FILE * fid; 
    fid = fopen("outputtouch.txt","w"); 
    
fprintf(fid,"%1.f\t%1.f\t%1.f\t%1.3f\t%1.3f\t%1.3f\t%1.f\t%1.f\t\n",VAR_DX[0],VAR_DX[1],V
AR_DX[2],VAR_DX[3],VAR_DX[4],VAR_DX[5],VAR_DX[6],varscreenopn); 
    fclose(fid); 
   } 
private: System::Void checkBox13_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
     switch(checkBox13->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox13->FlatStyle = FlatStyle::Flat; 
    this->checkBox13->FlatAppearance->BorderSize=2; 
   this->checkBox13->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox14->Enabled=false; 
    VAR_DX[6]=-1;    
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox13->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox14->Enabled=true; 
    VAR_DX[6]=0; 
            break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[6]=0;     
    this->checkBox12->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
private: System::Void checkBox14_CheckedChanged(System::Object^  sender, 
System::EventArgs^  e) { 
      switch(checkBox14->CheckState) { 
         case CheckState::Checked: 
    // Code for checked state. 
    this->checkBox14->FlatStyle = FlatStyle::Flat; 
    this->checkBox14->FlatAppearance->BorderSize=2; 
    this->checkBox14->FlatAppearance->BorderColor=Color::Red; 
    this->checkBox13->Enabled=false; 
    VAR_DX[6]=1;   
            break; 
         case CheckState::Unchecked: 
    // Code for unchecked state. 
    this->checkBox14->FlatStyle = FlatStyle::Standard;   
   
    this->checkBox13->Enabled=true; 
    VAR_DX[6]=0; 
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    break; 
         case CheckState::Indeterminate: 
    // Code for indeterminate state. 
    VAR_DX[6]=0;     
    this->checkBox14->FlatStyle = FlatStyle::Standard;              
            break; 
      } 
   } 
public: System::Void button1_Click(System::Object^  sender, System::EventArgs^  e) { 
   varscreenopn = 0;  
   VAR_DX[0]=0; 
   VAR_DX[1]=0; 
   VAR_DX[2]=0; 
   VAR_DX[3]=0; 
   VAR_DX[4]=0; 
   VAR_DX[5]=0; 
   VAR_DX[6]=0; 
   FILE * fid; 
   fid = fopen("outputtouch.txt","w"); 
    
fprintf(fid,"%1.f\t%1.f\t%1.f\t%1.3f\t%1.3f\t%1.3f\t%1.f\t%1.f\t\n",VAR_DX[0],VAR_DX[1],V
AR_DX[2],VAR_DX[3],VAR_DX[4],VAR_DX[5],VAR_DX[6],varscreenopn); 
   fclose(fid); 
   Form1::Close(); 
   } 
public: System::Void button4_Click(System::Object^  sender, System::EventArgs^  e) { 
   varscreenopn = 1;  
   FILE * fid; 
   fid = fopen("outputtouch.txt","w"); 
    
fprintf(fid,"%1.f\t%1.f\t%1.f\t%1.3f\t%1.3f\t%1.3f\t%1.f\t%1.f\t\n",VAR_DX[0],VAR_DX[1],V
AR_DX[2],VAR_DX[3],VAR_DX[4],VAR_DX[5],VAR_DX[6],varscreenopn); 
    
fclose(fid); 
  // Form1::Hide(); 
  } 
private: System::Void Form1_Load(System::Object^  sender, System::EventArgs^  e) { 
    Form1::CenterToScreen();  
    varscreenopn = 1.0;  
    FILE * fid; 
    fid = fopen("outputtouch.txt","w"); 
    
fprintf(fid,"%1.f\t%1.f\t%1.f\t%1.3f\t%1.3f\t%1.3f\t%1.f\t%1.f\t\n",VAR_DX[0],VAR_DX[1],V
AR_DX[2],VAR_DX[3],VAR_DX[4],VAR_DX[5],VAR_DX[6],varscreenopn); 
    fclose(fid); 
  
}*/ 
   } 
}; 
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